Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 64(2): 336-353, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38621716

RESUMO

A critical component of animal conservation in a changing world is an understanding of the physiological resilience of animals to different conditions. In many aquatic animals, hypoxia (low environmental oxygen levels) is a regular occurrence, but the likelihood and severity of hypoxia vary across habitats. Fast-flowing, stream-like habitats are never hypoxic, so long as flow is maintained. Do animals from such habitats retain the capacity to survive hypoxic conditions? We use aquatic frog tadpoles to test the effects of natural habitat on performance in hypoxia in an experimental framework, finding that stream-living tadpoles have reduced performance in hypoxia. Tadpoles also vary in lung presence, with some species able to breathe air during hypoxia. We found that among lunged tadpoles, air-breathing rates increase in hypoxia in pond-living species but not stream-living species. Lung presence was also found to influence hypoxia performance, as lungless, stream-living tadpoles were found to be especially vulnerable to hypoxia, while pond-living, lungless tadpoles appeared largely resilient to hypoxia. We consider the ramifications of our findings on conservation outlooks and strategies for frogs and their tadpoles, suggesting that stream-living tadpoles, and especially lungless, stream-living tadpoles, may be particularly at risk to factors that reduce stream flow. Thus, a primary goal for conservation and management of species with stream-living tadpoles should be the maintenance of year-round streamflow, which oxygenates waters and prevents hypoxia.


Assuntos
Anuros , Ecossistema , Larva , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Anuros/fisiologia , Oxigênio/metabolismo , Hipóxia , Respiração , Rios , Lagoas , Especificidade da Espécie
2.
Mol Phylogenet Evol ; 182: 107747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849095

RESUMO

Cladogenic diversification is often explained by referring to climatic oscillations and geomorphic shifts that cause allopatric speciation. In this regard, southern Africa retains a high level of landscape heterogeneity in vegetation, geology, and rainfall patterns. The legless skink subfamily Acontinae occurs broadly across the southern African subcontinent and therefore provides an ideal model group for investigating biogeographic patterns associated with the region. A robust phylogenetic study of the Acontinae with comprehensive coverage and adequate sampling of each taxon has been lacking up until now, resulting in unresolved questions regarding the subfamily's biogeography and evolution. In this study, we used multi-locus genetic markers (three mitochondrial and two nuclear) with comprehensive taxon coverage (all currently recognized Acontinae species) and adequate sampling (multiple specimens for most taxa) of each taxon to infer a phylogeny for the subfamily. The phylogeny retrieved four well-supported clades in Acontias and supported the monophyly of Typhlosaurus. Following the General Lineage Concept (GLC), many long-standing phylogenetic enigmas within Acontias occidentalis and the A. kgalagadi, A. lineatus and A. meleagris species complexes, and within Typhlosaurus were resolved. Our species delimitation analyses suggest the existence of hidden taxa in the A. occidentalis, A. cregoi and A. meleagris species groups, but also suggest that some currently recognized species in the A. lineatus and A. meleagris species groups, and within Typhlosaurus, should be synonymised. We also possibly encountered "ghost introgression" in A. occidentalis. Our inferred species tree revealed a signal of gene flow, which implies possible cross-over in some groups. Fossil evidence calibration dating results showed that the divergence between Typhlosaurus and Acontias was likely influenced by cooling and increasing aridity along the southwest coast in the mid-Oligocene caused by the opening of the Drake Passage. Further cladogenesis observed in Typhlosaurus and Acontias was likely influenced by Miocene cooling, expansion of open habitat, uplifting of the eastern Great Escarpment (GE), and variation in rainfall patterns, together with the effect of the warm Agulhas Current since the early Miocene, the development of the cold Benguela Current since the late Miocene, and their co-effects. The biogeographic pattern of the Acontinae bears close resemblance to that of other herpetofauna (e.g., rain frogs and African vipers) in southern Africa.


Assuntos
Especiação Genética , Lagartos , Animais , Filogenia , África Austral , Ecossistema , Lagartos/genética , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA