Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 563: 111864, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690169

RESUMO

Prenatal exposure to synthetic glucocorticoids (sGCs) reprograms brain development and predisposes the developing fetus towards potential adverse neurodevelopmental outcomes. Using a mouse model of sGC administration, previous studies show that these changes are accompanied by sexually dimorphic alterations in the transcriptome of neural stem and progenitor cells (NSPCs) derived from the embryonic telencephalon. Because cell type-specific gene expression profiles tightly regulate cell fate decisions and are controlled by a flexible landscape of chromatin domains upon which transcription factors and enhancer elements act, we multiplexed data from four genome-wide assays: RNA-seq, ATAC-seq (assay for transposase accessible chromatin followed by genome wide sequencing), dual cross-linking ChIP-seq (chromatin immunoprecipitation followed by genome wide sequencing), and microarray gene expression to identify novel relationships between gene regulation, chromatin structure, and genomic glucocorticoid receptor (GR) action in NSPCs. These data reveal that GR binds preferentially to predetermined regions of accessible chromatin to influence gene programming and cell fate decisions. In addition, we identify SOX2 as a transcription factor that impacts the genomic response of select GR target genes to sGCs (i.e., dexamethasone) in NSPCs.


Assuntos
Glucocorticoides , Células-Tronco Neurais , Feminino , Gravidez , Cromatina/metabolismo , Regulação da Expressão Gênica , Genômica , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Células-Tronco Neurais/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674677

RESUMO

DNA sequence variants (single nucleotide polymorphisms or variants, SNPs/SNVs; copy number variants, CNVs) associated to neurodevelopmental disorders (NDD) and traits often map on putative transcriptional regulatory elements, including, in particular, enhancers. However, the genes controlled by these enhancers remain poorly defined. Traditionally, the activity of a given enhancer, and the effect of its possible alteration associated to the sequence variants, has been thought to influence the nearest gene promoter. However, the obtainment of genome-wide long-range interaction maps in neural cells chromatin challenged this view, showing that a given enhancer is very frequently not connected to the nearest promoter, but to a more distant one, skipping genes in between. In this Perspective, we review some recent papers, who generated long-range interaction maps (by HiC, RNApolII ChIA-PET, Capture-HiC, or PLACseq), and overlapped the identified long-range interacting DNA segments with DNA sequence variants associated to NDD (such as schizophrenia, bipolar disorder and autism) and traits (intelligence). This strategy allowed to attribute the function of enhancers, hosting the NDD-related sequence variants, to a connected gene promoter lying far away on the linear chromosome map. Some of these enhancer-connected genes had indeed been already identified as contributive to the diseases, by the identification of mutations within the gene's protein-coding regions (exons), validating the approach. Significantly, however, the connected genes also include many genes that were not previously found mutated in their exons, pointing to novel candidate contributors to NDD and traits. Thus, long-range interaction maps, in combination with DNA variants detected in association with NDD, can be used as "pointers" to identify novel candidate disease-relevant genes. Functional manipulation of the long-range interaction network involving enhancers and promoters by CRISPR-Cas9-based approaches is beginning to probe for the functional significance of the identified interactions, and the enhancers and the genes involved, improving our understanding of neural development and its pathology.


Assuntos
Cromatina , Transtornos do Neurodesenvolvimento , Humanos , Cromatina/genética , Elementos Facilitadores Genéticos , DNA , Regiões Promotoras Genéticas , Transtornos do Neurodesenvolvimento/genética , Estudo de Associação Genômica Ampla
3.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887306

RESUMO

Non-coding variation in complex human disease has been well established by genome-wide association studies, and is thought to involve regulatory elements, such as enhancers, whose variation affects the expression of the gene responsible for the disease. The regulatory elements often lie far from the gene they regulate, or within introns of genes differing from the regulated gene, making it difficult to identify the gene whose function is affected by a given enhancer variation. Enhancers are connected to their target gene promoters via long-range physical interactions (loops). In our study, we re-mapped, onto the human genome, more than 10,000 enhancers connected to promoters via long-range interactions, that we had previously identified in mouse brain-derived neural stem cells by RNApolII-ChIA-PET analysis, coupled to ChIP-seq mapping of DNA/chromatin regions carrying epigenetic enhancer marks. These interactions are thought to be functionally relevant. We discovered, in the human genome, thousands of DNA regions syntenic with the interacting mouse DNA regions (enhancers and connected promoters). We further annotated these human regions regarding their overlap with sequence variants (single nucleotide polymorphisms, SNPs; copy number variants, CNVs), that were previously associated with neurodevelopmental disease in humans. We document various cases in which the genetic variant, associated in humans to neurodevelopmental disease, affects an enhancer involved in long-range interactions: SNPs, previously identified by genome-wide association studies to be associated with schizophrenia, bipolar disorder, and intelligence, are located within our human syntenic enhancers, and alter transcription factor recognition sites. Similarly, CNVs associated to autism spectrum disease and other neurodevelopmental disorders overlap with our human syntenic enhancers. Some of these enhancers are connected (in mice) to homologs of genes already associated to the human disease, strengthening the hypothesis that the gene is indeed involved in the disease. Other enhancers are connected to genes not previously associated with the disease, pointing to their possible pathogenetic involvement. Our observations provide a resource for further exploration of neural disease, in parallel with the now widespread genome-wide identification of DNA variants in patients with neural disease.


Assuntos
Células-Tronco Neurais , Transtornos do Neurodesenvolvimento , Animais , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Regiões Promotoras Genéticas/genética
4.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626641

RESUMO

SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.


Assuntos
Células-Tronco Neurais , Neuroglia , Fatores de Transcrição SOXB1/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/metabolismo
5.
Cell Rep ; 38(5): 110313, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108528

RESUMO

The adult neurogenic niche in the hippocampus is maintained through activation of reversibly quiescent neural stem cells (NSCs) with radial glia-like morphology (RGLs). Here, we show that the expression of SoxD transcription factors Sox5 and Sox6 is enriched in activated RGLs. Using inducible deletion of Sox5 or Sox6 in the adult mouse brain, we show that both genes are required for RGL activation and the generation of new neurons. Conversely, Sox5 overexpression in cultured NSCs interferes with entry in quiescence. Mechanistically, expression of the proneural protein Ascl1 (a key RGL regulator) is severely downregulated in SoxD-deficient RGLs, and Ascl1 transcription relies on conserved Sox motifs. Additionally, loss of Sox5 hinders the RGL activation driven by neurogenic stimuli such as environmental enrichment. Altogether, our data suggest that SoxD genes are key mediators in the transition of adult RGLs from quiescence to an activated mitotic state under physiological situations.


Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXD/metabolismo , Animais , Diferenciação Celular/fisiologia , Hipocampo/metabolismo , Camundongos Transgênicos , Neurogênese/fisiologia , Fatores de Transcrição SOXD/genética , Fatores de Transcrição/metabolismo
6.
Cells ; 10(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359927

RESUMO

The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Genoma , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição AP-1/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Regulação para Baixo/genética , Deleção de Genes , Lentivirus/metabolismo , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , RNA-Seq , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33739574

RESUMO

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição SOXB1 , Animais , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
8.
Brain Struct Funct ; 226(4): 1303-1322, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33661352

RESUMO

The neocortex, the most recently evolved brain region in mammals, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the presence of graded expression of transcription factors and molecular determinants defining neuronal identity. However, little is known about the expression of key master genes orchestrating human cortical development. In this study, we explored the expression dynamics of NR2F1 and SOX2, key cortical genes whose mutations in human patients cause severe neurodevelopmental syndromes. We focused on physiological conditions, spanning from mid-late gestational ages to adulthood in unaffected specimens, but also investigated gene expression in a pathological context, a developmental cortical malformation termed focal cortical dysplasia (FCD). We found that NR2F1 follows an antero-dorsallow to postero-ventralhigh gradient as in the murine cortex, suggesting high evolutionary conservation. While SOX2 is mainly expressed in neural progenitors next to the ventricular surface, NR2F1 is found in both mitotic progenitors and post-mitotic neurons at GW18. Interestingly, both proteins are highly co-expressed in basal radial glia progenitors of the outer sub-ventricular zone (OSVZ), a proliferative region known to contribute to cortical expansion and complexity in humans. Later on, SOX2 becomes largely restricted to astrocytes and oligodendrocytes although it is also detected in scattered mature interneurons. Differently, NR2F1 maintains its distinct neuronal expression during the whole process of cortical development. Notably, we report here high levels of NR2F1 in dysmorphic neurons and NR2F1 and SOX2 in balloon cells of surgical samples from patients with FCD, suggesting their potential use in the histopathological characterization of this dysplasia.


Assuntos
Fator I de Transcrição COUP/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Adulto , Animais , Humanos , Interneurônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição SOXB1/genética
9.
Open Biol ; 11(2): 200339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622105

RESUMO

The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.


Assuntos
Giro Denteado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXB1/metabolismo , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Giro Denteado/citologia , Giro Denteado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
10.
Nat Commun ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397924

RESUMO

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/genética , Relação Estrutura-Atividade
11.
Glia ; 69(3): 579-593, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32975900

RESUMO

Cancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain gliomas, and is essential to maintain CSC. In mouse high-grade glioma pHGG cells in culture, Sox2 deletion causes cell proliferation arrest and inability to reform tumors after transplantation in vivo; in Sox2-deleted cells, 134 genes are derepressed. To identify genes mediating Sox2 deletion effects, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Ebf1, Hey2, Zfp423, and Cdkn2b, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis of each gene, individually or in combination (Ebf1 + Cdkn2b), significantly antagonized the proliferation arrest caused by Sox2 deletion. The same genes also repressed clonogenicity in primary human glioblastoma-derived CSC-like lines. These experiments identify a network of critical tumor suppressive Sox2-targets whose inhibition by Sox2 is involved in glioma CSC maintenance, defining new potential therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Encefálicas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação para Baixo , Glioma/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores
12.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540269

RESUMO

The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to neurons and glia normally involves Sox2 downregulation. Recent evidence, however, identified specific types of fully differentiated neurons and glia that retain high Sox2 expression, and critically require Sox2 function, as revealed by functional studies in mouse and in other animals. Sox2 was found to control fundamental aspects of the biology of these cells, such as the development of correct neuronal connectivity. Sox2 downstream target genes identified within these cell types provide molecular mechanisms for cell-type-specific Sox2 neuronal and glial functions. SOX2 mutations in humans lead to a spectrum of nervous system defects, involving vision, movement control, and cognition; the identification of neurons and glia requiring Sox2 function, and the investigation of Sox2 roles and molecular targets within them, represents a novel perspective for the understanding of the pathogenesis of these defects.


Assuntos
Células-Tronco Neurais/citologia , Neuroglia/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular , Autorrenovação Celular , Regulação para Baixo , Humanos , Camundongos , Mutação , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/metabolismo , Transdução de Sinais
13.
J Exp Neurosci ; 13: 1179069519868224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431802

RESUMO

In our article, we asked whether Sox2, a transcription factor important in brain development and disease, is involved in gene regulation through its action on long-range interactions between promoters and distant enhancers. Our findings highlight that Sox2 shapes a genome-wide network of promoter-enhancer interactions, acting by direct binding to these elements. Sox2 loss affects the three-dimensional (3D) genome and decreases the activity of a subset of genes involved in Sox2-bound interactions. At least one of such downregulated genes, Socs3, is critical for long-term neural stem cell maintenance. These results point to the possibility of identifying a transcriptional network downstream to Sox2, and involved in neural stem cell maintenance. In addition, interacting Sox2-bound enhancers are often connected to genes which are relevant, in man, to neurodevelopmental disease; this may facilitate the detection of functionally relevant mutations in regulatory elements in man, contributing to neural disease.

14.
iScience ; 15: 257-273, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31082736

RESUMO

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans.

15.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849367

RESUMO

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Assuntos
Cromatina/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células Cultivadas , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Peixe-Zebra
16.
Glia ; 66(9): 1929-1946, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29732603

RESUMO

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Assuntos
Ataxia/metabolismo , Vermis Cerebelar/crescimento & desenvolvimento , Vermis Cerebelar/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Animais Recém-Nascidos , Ataxia/patologia , Células Cultivadas , Vermis Cerebelar/patologia , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/patologia , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição SOXB1/genética , Transmissão Sináptica/fisiologia
17.
Development ; 145(2)2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352015

RESUMO

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression.


Assuntos
Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neurogênese/fisiologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Apoptose , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína Morfogenética Óssea 4/metabolismo , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Embrião de Galinha , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Neurogênese/genética , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Regulação para Cima
18.
Sci Adv ; 2(8): e1600060, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27493992

RESUMO

Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.


Assuntos
Diferenciação Celular , Células Clonais/citologia , Face/embriologia , Morfogênese , Crista Neural/citologia , Organogênese , Animais , Movimento Celular , Ectoderma/citologia , Ectoderma/embriologia , Expressão Gênica , Genes Reporter , Imageamento Tridimensional , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Modelos Anatômicos , Fenótipo , Peixe-Zebra
19.
Cancer Res ; 74(6): 1833-44, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24599129

RESUMO

The stem cell-determining transcription factor Sox2 is required for the maintenance of normal neural stem cells. In this study, we investigated the requirement for Sox2 in neural cancer stem-like cells using a conditional genetic deletion mutant in a mouse model of platelet-derived growth factor-induced malignant oligodendroglioma. Transplanting wild-type oligodendroglioma cells into the brain generated lethal tumors, but mice transplanted with Sox2-deleted cells remained free of tumors. Loss of the tumor-initiating ability of Sox2-deleted cells was reversed by lentiviral-mediated expression of Sox2. In cell culture, Sox2-deleted tumor cells were highly sensitive to differentiation stimuli, displaying impaired proliferation, increased cell death, and aberrant differentiation. Gene expression analysis revealed an early transcriptional response to Sox2 loss. The observed requirement of oligodendroglioma stem cells for Sox2 suggested its relevance as a target for therapy. In support of this possibility, an immunotherapeutic approach based on immunization of mice with SOX2 peptides delayed tumor development and prolonged survival. Taken together, our results showed that Sox2 is essential for tumor initiation by mouse oligodendroglioma cells, and they illustrated a Sox2-directed strategy of immunotherapy to eradicate tumor-initiating cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Oligodendroglioma/metabolismo , Fatores de Transcrição SOXB1/fisiologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglioma/imunologia , Oligodendroglioma/patologia , Oligodendroglioma/terapia , Fragmentos de Peptídeos/imunologia , Fatores de Transcrição SOXB1/imunologia , Transcriptoma , Células Tumorais Cultivadas
20.
Nature ; 504(7479): 306-310, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213634

RESUMO

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Animais , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA