Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452449

RESUMO

Phyto-pathogenic fungal species is a leading biotic stress factor to agri-food production and ecosystem of globe. Chemical (Systemic fungicides) and biological treatment (micro-organism) are globally accepted methods that are being used against biotic stress (disease) management. Plant Growth-Promoting Microbes are being used as an alternative to ease chemical dependency as their overdoses have generated injurious effects on plants and environment. Therefore, present study performs to evaluate the photochemical and physiological profiling of plants exposed to chemical and biological treatment in biotic stress (disease) environment. Two concentrations of each chemical treatment i.e. Topsin-M 70 (Dimethyl 4,4'-o-phenylene bis 3-thioallaphanate, MF1 = 3 g kg-1 and MF2 = 6 g kg-1 seeds) and biological treatment i.e. Trichoderma harzianum strain Th-6 (MT1 = 106 spores mL-1and MT2 = 107 spores mL-1) were used in this experiment. Macrophomina phaseolina (MP) were used as biotic stress factor causing root rot disease in soybean plants. Morpho-physiological assessments and light harvesting efficiency of photosystem II were conducted after 52 days of treatment. Maximum quantum yield (Fv/Fm), number and size of active reaction center (Fv/Fo), photochemical quenching (qP), efficiency of photosystem II (ΦPSII), electron transport rate (ETR), chlorophyll content index (CCI), relative water content (RWC) and stomatal conductance (SC) were increased in MT2 and MF1 treatments as compared to stress plants (MP). Biological (MT2) and chemical (MF1) treatment lessen the production of stress markers showing -48.0 to -54.3% decline in malondialdehyde (MDA) and -42.0 to -53.7% in hydrogen peroxide (H2O2) as compared to stress plant (MP). Biological treatment in both concentration (MF1 & MF2) while chemical treatment at low dose effectively mitigates biotic stress and eases the magnitude of disease. Increasing doses of chemical treatment persuaded deleterious effects on the physiology and light harvesting efficiency of stressed plant suggesting the role of biological treatment (T. harzianum) against biotic stress management in future of crop protection.


Assuntos
Ascomicetos , Fotossíntese , Glycine max , Complexo de Proteína do Fotossistema II/metabolismo , Ecossistema , Peróxido de Hidrogênio/farmacologia , Clorofila/fisiologia , Estresse Fisiológico , Ascomicetos/metabolismo , Folhas de Planta/metabolismo
2.
Front Plant Sci ; 14: 1082480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968419

RESUMO

Abiotic stress is one of the major constraints which restrain plant growth and productivity by disrupting physiological processes and stifling defense mechanisms. Hence, the present work aimed to evaluate the sustainability of bio-priming salt tolerant endophytes for improving plant salt tolerance. Paecilomyces lilacinus KUCC-244 and Trichoderma hamatum Th-16 were obtained and cultured on PDA medium containing different concentrations of NaCl. The highest salt (500 mM) tolerant fungal colonies were selected and purified. Paecilomyces at 61.3 × 10-6 conidia/ml and Trichoderma at about 64.9 × 10-3 conidia/ml of colony forming unit (CFU) were used for priming wheat and mung bean seeds. Twenty- days-old primed and unprimed seedlings of wheat and mung bean were subjected to NaCl treatments at 100 and 200 mM. Results indicate that both endophytes sustain salt resistance in crops, however T. hamatum significantly increased the growth (141 to 209%) and chlorophyll content (81 to 189%), over unprimed control under extreme salinity. Moreover, the reduced levels (22 to 58%) of oxidative stress markers (H2O2 and MDA) corresponded with the increased antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) activities (141 and 110%). Photochemical attributes like quantum yield (FV/FM) (14 to 32%) and performance index (PI) (73 to 94%) were also enhanced in bio-primed plants in comparison to control under stress. In addition, the energy loss (DIO/RC) was considerably less (31 to 46%), corresponding with lower damage at PS II level in primed plants. Also, the increase in I and P steps of OJIP curve in T. hamatum and P. lilacinus primed plants showed the availability of more active reaction centers (RC) at PS II under salt stress in comparison to unprimed control plants. Infrared thermographic images also showed that bio-primed plants were resistant to salt stress. Hence, it is concluded that the use of bio-priming with salt tolerant endophytes specifically T. hamatum can be an effective approach to mitigate the salt stress cosnequences and develop a potential salt resistance in crop plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA