Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(4): uhad035, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37799627

RESUMO

Cold-induced sweetening (CIS), the undesirable sugar accumulation in cold-stored potato (Solanum tuberosum L.) tubers, is a severe postharvest issue in the potato processing industry. Although the process of sucrose hydrolysis by vacuolar invertase during potato CIS is well understood, there is limited knowledge about the transportation of sucrose from the cytosol to the vacuole during postharvest cold storage. Here, we report that among the three potato tonoplast sugar transporters (TSTs), StTST1 exhibits the highest expression in tubers during postharvest cold storage. Subcellular localization analysis demonstrates that StTST1 is a tonoplast-localized protein. StTST1 knockdown decreases reducing sugar accumulation in tubers during low-temperature storage. Compared to wild-type, potato chips produced from StTST1-silenced tubers displayed significantly lower acrylamide levels and lighter color after cold storage. Transcriptome analysis manifests that suppression of StTST1 promotes starch synthesis and inhibits starch degradation in cold-stored tubers. We further establish that the increased sucrose content in the StTST1-silenced tubers might cause a decrease in the ABA content, thereby inhibiting the ABA-signaling pathway. We demonstrate that the down-regulation of ß-amylase StBAM1 in StTST1-silenced tubers might be directly controlled by ABA-responsive element-binding proteins (AREBs). Altogether, we have shown that StTST1 plays a critical role in sugar accumulation and starch metabolism regulation during postharvest cold storage. Thus, our findings provide a new strategy to improve the frying quality of cold-stored tubers and reduce the acrylamide content in potato chips.

2.
Commun Biol ; 6(1): 855, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591976

RESUMO

CRISPR-Cas systems endow the bacterial and archaeal species with adaptive immune mechanisms to fend off invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13d has been harnessed to confer the protection against RNA viruses in diverse eukaryotic species. However a vast number of different viruses can potentially infect the same host plant resulting in mixed infection, thus necessitating the generation of crops with broad-spectrum resistance to multiple viruses. Here we report the repurposing of CRISPR/Cas13d coupled with an endogenous tRNA-processing system (polycistronic tRNA-gRNA, PTG) to target the multiple potato RNA viruses. Expression of Cas13d and four different gRNAs were observed in transgenic potato lines expressing the Cas13d/PTG construct. We show that the Cas13d/PTG transgenic plants exhibit resistance to either PVY, PVS, PVX or PLRV alone or two/three viruses simultaneously by reducing viral accumulation in plant cells. In sum, our findings provide an efficient strategy for engineering crops that can simultaneously resist infection by multiple RNA viruses.


Assuntos
Vírus de RNA , Solanum tuberosum , RNA , Solanum tuberosum/genética , Processamento Pós-Transcricional do RNA , Archaea , Produtos Agrícolas
3.
Planta ; 258(4): 70, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620620

RESUMO

MAIN CONCLUSION: The Cas13a-based multiplex RNA targeting system can be engineered to confer resistance to RNA viruses, whereas the number and expression levels of gRNAs have no significant effect on viral interference. The CRISPR-Cas systems provide adaptive immunity to bacterial and archaeal species against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a has been harnessed to confer the protection against RNA viruses in diverse eukaryotic species. However, whether the number and expression levels of guide RNAs (gRNAs) have effects on the efficiency of RNA virus inhibition is unknown. Here, we repurpose CRISPR/Cas13a in combination with an endogenous tRNA-processing system (polycistronic tRNA-gRNA) to target four genes of potato virus Y (PVY) with varying expression levels. We expressed Cas13a and four different gRNAs in potato lines, and the transgenic plants expressing multiple gRNAs displayed similar suppression of PVY accumulation and reduced disease symptoms as those expressing a single gRNA. Moreover, PTG/Cas13a-transformed plants with different expression levels of multiple gRNAs displayed similar resistance to PVY strains. Collectively, this study suggests that the Cas13a-based multiplex RNA targeting system can be utilized to engineer resistance to RNA viruses in plants, whereas the number and expression levels of gRNAs have no significant effect on CRISPR/Cas13a-mediated viral interference in plants.


Assuntos
Potyvirus , Potyvirus/genética , RNA , Sistemas CRISPR-Cas/genética , Plantas Geneticamente Modificadas/genética , Processamento Pós-Transcricional do RNA
4.
J Exp Bot ; 74(21): 6708-6721, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479226

RESUMO

Abscisic acid (ABA) is critical in drought tolerance and plant growth. Group A protein type 2C phosphatases (PP2Cs) are negative regulators of ABA signaling and plant adaptation to stress. Knowledge about the functions of potato group A PP2Cs is limited. Here, we report that the potato group A PP2C StHAB1 is broadly expressed in potato plants and strongly induced by ABA and drought. Suppression of StHAB1 enhanced potato ABA sensitivity and drought tolerance, whereas overexpression of the dominant mutant StHAB1G276D compromised ABA sensitivity and drought tolerance. StHAB1 interacts with almost all ABA receptors and the Snf1-Related Kinase OST1. Suppressing StHAB1 and overexpressing StHAB1G276D alter potato growth morphology; notably, overexpression of StHAB1G276D causes excessive shoot branching. RNA-sequencing analyses identified that the auxin efflux carrier genes StPIN3, StPIN5, and StPIN8 were up-regulated in StHAB1G276D-overexpressing axillary buds. Correspondingly, the auxin concentration was reduced in StHAB1G276D-overexpressing axillary buds, consistent with the role of auxin in repressing lateral branch outgrowth. The expression of BRANCHED1s (StBRC1a and StBRC1b) was unchanged in StHAB1G276D-overexpressing axillary buds, suggesting that StHAB1G276D overexpression does not cause axillary bud outgrowth via regulation of BRC1 expression. Our findings demonstrate that StHAB1 is vital in potato drought tolerance and shoot branching.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum tuberosum , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Seca , Ácidos Indolacéticos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
5.
Hortic Res ; 9: uhac159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204208

RESUMO

Plant viruses recruit multiple host factors for translation, replication, and movement in the infection process. The loss-of-function mutation of the susceptibility genes will lead to the loss of susceptibility to viruses, which is referred to as 'recessive resistance'. Essential for potexvirus Accumulation 1 (EXA1) has been identified as a susceptibility gene required for potexvirus, lolavirus, and bacterial and oomycete pathogens. In this study, EXA1 knockdown in potato (StEXA1) was found to confer novel resistance to potato virus Y (PVY, potyvirus) in a strain-specific manner. It significantly compromised PVYO accumulation but not PVYN:O and PVYNTN. Further analysis revealed that StEXA1 is associated with the HC-Pro of PVY through a member of eIF4Es (StnCBP). HC-ProO and HC-ProN, two HC-Pro proteins from PVYO and PVYN, exhibited strong and weak interactions with StnCBP, respectively, due to their different spatial conformation. Moreover, the accumulation of PVYO was mainly dependent on the stress granules (SGs) induced by StEXA1 and StnCBP, whereas PVYN:O and PVYNTN could induce SGs by HC-ProN independently through an unknown mechanism. These results could explain why StEXA1 or StnCBP knockdown conferred resistance to PVYO but not to PVYN:O and PVYNTN. In summary, our results for the first time demonstrate that EXA1 can act as a susceptibility gene for PVY infection. Finally, a hypothetical model was proposed for understanding the mechanism by which StEXA1 interacts with StnCBP to facilitate PVY accumulation in potato through the SG-dependent RNA regulatory pathway.

6.
Front Plant Sci ; 13: 946873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003826

RESUMO

Due to their limited coding capacity, plant viruses have to depend on various host factors for successful infection of the host. Loss of function of these host factors will result in recessively inherited resistance, and therefore, these host factors are also described as susceptibility genes or recessive resistance genes. Most of the identified recessive resistance genes are members of the eukaryotic translation initiation factors 4E family (eIF4E) and its isoforms. Recently, an eIF4E-type gene, novel cap-binding protein (nCBP), was reported to be associated with the infection of several viruses encoding triple gene block proteins (TGBps) in Arabidopsis. Here, we, for the first time, report that the knockdown of nCBP in potato (StnCBP) compromises the accumulation of potato virus S (PVS) but not that of potato virus M (PVM) and potato virus X (PVX), which are three potato viruses encoding TGBps. Further assays demonstrated that StnCBP interacts with the coat proteins (CPs) of PVS and PVM but not with that of PVX, and substitution of PVS CP in the PVS infectious clone by PVM CP recovered the virus infection in StnCBP-silenced transgenic plants, suggesting that the recognition of PVS CP is crucial for StnCBP-mediated recessive resistance to PVS. Moreover, the knockdown of nCBP in Nicotiana benthamiana (NbnCBP) by virus-induced gene silencing suppressed PVX accumulation but not PVM, while NbnCBP interacted with the CPs of both PVX and PVM. Our results indicate that the nCBP orthologues in potato and tobacco have conserved function as in Arabidopsis in terms of recessive resistance against TGB-encoding viruses, and the interaction between nCBP and the CP of TGB-encoding virus is necessary but not sufficient to determine the function of nCBP as a susceptibility gene.

7.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456372

RESUMO

HSP40 (also known as DnaJ), HSP70, and HSP90 are major heat shock protein (HSP) families that play critical roles in plant growth and development and stress adaption. Recently, several members of the three HSP families were reported to be widely involved in the plant host-virus interactions. However, their global expression profiles and core members recruited by viruses are largely unknown. In this study, a total of 89 StDnaJs were identified from a genome-wide survey, and their classification, phylogenetic relationships, chromosomal locations, and gene duplication events were further analyzed. Together with 20 StHSP70s and 7 StHSP90s previously identified in the potato genome, the global expression patterns of the members in 3 HSP families were investigated in 2 potato cultivars during Potato virus Y (PVY) infection using RNA-seq data. Of them, 16 genes (including 8 StDnaJs, 6 StHSP70s, and 2 StHSP90s) were significantly up- or downregulated. Further analysis using qRT-PCR demonstrated that 7 of the 16 genes (StDnaJ06, StDnaJ17, StDnaJ21, StDnaJ63, StHSP70-6, StHSP70-19, and StHSP90.5) were remarkably upregulated in the potato cultivar 'Eshu 3' after PVY infection, implying their potential roles in the potato-PVY compatible interaction. Subsequent virus-induced gene silencing (VIGS) assays showed that silencing of the homologous genes of StDnaJ17, StDnaJ21, StHSP70-6, and StHSP90.5 in Nicotiana. benthamiana plants dramatically reduced the accumulation of PVY, which indicated the four genes may function as susceptibility factors in PVY infection. This study provides candidate genes for exploring the mechanism of potato-PVY compatible interaction and benefits breeding work aiming to produce new cultivars with the ability to grow healthily under PVY infection.


Assuntos
Potyvirus , Solanum tuberosum , Humanos , Filogenia , Melhoramento Vegetal , Doenças das Plantas/genética , Potyvirus/genética , Solanum tuberosum/genética , Nicotiana/genética
8.
Plant Dis ; 105(11): 3344-3348, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34096772

RESUMO

Potato virus A (PVA) and potato virus Y (PVY) are two members of genus Potyvirus infecting potato crops worldwide. Host resistance offers an economical and effective means for the control or management of these viruses. In this study, 20 potato clones were screened for their resistance against PVA and PVY by mechanical or graft inoculation assay, and were explored for the relationship between extreme resistance genes Ra and Ry by the detection of molecular markers linked to Ryadg, Rysto, and Rychc. Six clones, including Barbara, Jizhangshu 8, Longshu 7, Longshu 8, M6, and Solara, were found to be extremely resistant to both PVA and PVY; three clones (AC142, Eshu 3, and Shepody) were deemed to be extremely resistant to PVA but susceptible to PVY. To further reveal the inheritance of the extreme resistance (ER) against PVA, a tetraploid F1 population of Barbara × F58050 (susceptible to both PVY and PVA) and a tetraploid BC1 population of BF145 (a PVA-resistant but PVY-susceptible progeny of Barbara × F58050) × F58050 were obtained. Phenotyping of the F1 and BC1 populations by graft inoculation with PVA showed segregation ratios of 3:1 and 1:1 (resistant:susceptible), respectively. These results suggest that two independent loci control ER against PVA in Barbara: one confers ER to both PVA and PVY and the other confers ER to PVA only. The deduced genotype of Barbara is RyryryryRararara.


Assuntos
Potyvirus , Solanum tuberosum , Genótipo , Doenças das Plantas , Potyvirus/genética , Solanum tuberosum/genética
9.
Food Chem ; 334: 127550, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693335

RESUMO

Potato accumulates large amounts of soluble sugar during cold storage periods. However, a system based understanding of this process is still largely unknown. Here, we compared the dynamic cold-responded transcriptome of genotypes between cold-induced sweetening resistant (CIS-R) and cold-induced sweetening sensitive (CIS-S) in tubers. Comparative transcriptome revealed that activating the pathways of starch degradation, sucrose synthesis and hydrolysis could be common strategies in response to cold in both genotypes. Moreover, the variation in sugar accumulation between genotypes may be due to genetic differences in cold response, which could be mainly explained: CIS-R genotype was active in starch synthesis and attenuated in sucrose hydrolysis by promoting the coordinate expression of aseries ofgenes involved in starch-sugar interconversion. Additionally, transcription factors, the candidate master regulators of starch-sugar interconversion, were discussed. Taken together, this work has provided an avenue for studying the mechanism involved in the regulation of the CIS resistance.


Assuntos
Solanum tuberosum/genética , Amido/metabolismo , Açúcares/metabolismo , Edulcorantes/metabolismo , Transcriptoma , Temperatura Baixa , Regulação para Baixo , Genótipo , Hidrólise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Análise de Componente Principal , Solanum tuberosum/metabolismo , Regulação para Cima
10.
Plant Dis ; 105(4): 948-957, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32915119

RESUMO

In this study, a set of duplex reverse transcription PCR (RT-PCR)-mediated high-resolution DNA melting (HRM) analyses for simultaneous detection of potato mop-virus (PMTV) and its protist vector, Spongospora subterranea f. sp. subterranea (Sss), was developed. The infestation of soil by PMTV was detected with a tobacco-based baiting system. Total RNA extracted from the soil led to successful RT-PCR gel electrophoresis detection of both PMTV and Sss. To facilitate more efficient detection, newly designed primer pairs for PMTV RNA species (i.e., RNA-Rep, RNA-CP, and RNA-TGB) were analyzed together with the existing Sss primers via real-time RT-PCR. The resulting amplicons exhibited melting profiles that could be readily differentiated. Under duplex RT-PCR format, all PMTV and Sss primer combinations led to successful detection of respective PMTV RNA species and Sss in the samples by HRM analyses. When the duplex HRM assay was applied to soil samples collected from six fields at four different sites in New Brunswick, Canada, positive detection of PMTV or Sss was found in 63 to 100% samples collected from fields in which PMTV-infected tubers had been observed. In contrast, the samples from fields where neither PMTV- nor Sss-infected tubers had been observed resulted in negative detection by the assay. Bait tobacco bioassay for PMTV and Sss produced similar results. Of the soil samples collected from PMTV-infested fields, 63 to 83% and 100% led to PMTV and Sss infections in the bait tobacco plants, respectively, whereas no PMTV- or Sss-infected plants were obtained from soil samples collected from PMTV- and Sss-free fields.


Assuntos
Vírus de Plantas , Canadá , Desnaturação de Ácido Nucleico , Doenças das Plantas , Vírus de Plantas/genética , Solo
11.
Plant Physiol Biochem ; 157: 38-46, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069979

RESUMO

Nitrogen (N) is an important nutrient for increased potato tuber yield. However, excessive N can decrease tuber quality. Furthermore, the impact of optimal and higher N levels of potato tuber metabolic profile at harvest and cold storage remains unclear. This study aimed to investigate the metabolic profiling of free amino acids and sugars in potato tubers affected by different nitrogen levels (optimal, ON; and excessive, EN) at harvest (AH) and cold storage (CS) (~4 °C, 4 weeks) through untargeted GC-TOF-MS, and targeted UHPLC-QqQ-MS. Carbohydrate content and vacuolar invertase activity (IV) were determined. Principal component analysis of metabolite data indicated a distinct separation between ON and EN treatments at harvest and cold storage. Multivariate data analysis revealed that sucrose, reducing sugars, and free asparagine were the most altered metabolites (VIP > 1 and P < 0.05), which were involved in starch and sucrose metabolism, and alanine, aspartate and glutamate metabolism. At harvest, the absolute contents of various free amino acids including asparagine were higher (by 1.3-1.5 fold) in the EN treatment than ON treatment, and this difference was maintained at 4-week cold storage. Under the EN treatment, tuber maturity was reduced, and sucrose accumulation was increased at harvest, while IV was increased after cold storage, reducing sugar also accumulated. These results highlighted the negative effects of EN on free amino acid and sugars metabolism in the post-harvest tubers and provided useful information for understanding the underpinning physiological mechanisms.


Assuntos
Aminoácidos/metabolismo , Temperatura Baixa , Nitrogênio/metabolismo , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Tubérculos/metabolismo
12.
Mol Cell Probes ; 50: 101505, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31904418

RESUMO

In this study, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed for the efficient and accurate detection of potato virus Y (PVY) under isothermal conditions. This RT-RPA assay was more efficient than the conventional reverse transcription-polymerase chain reaction (RT-PCR) assay as the amplification reaction can be completed in less than 20 min. Moreover, unlike PCR that requires a thermocycler to carry out the DNA amplification through specific temperature phases, RPA assay could be performed under an isothermal condition at a temperature ranging from 25 to 40 °C. A simple instrumentation such as a heating block or a water bath or even anon-instrumental condition such as human hands or a benchtop inside/outside a room during the summer could satisfy the temperature requirement of RPA. The sensitivity of this assay was equivalent to that of the conventional RT-PCR, and the virus can be detected in a minimum of 2 pg of total RNA extracted from the PVY infected potato leaf tissues. The efficacy of the newly developed RT-RPA was then evaluated using field potato leaf and dormancy-broken sprout samples upon enzyme-linked immunosorbent assay (ELISA) screening. Of the 164 PVY-ELISA-positive samples, RT-RPA detected 157 whereas simplex RT-PCR detected 160 and multiplex RT-PCR detected 154. Of the 74 randomly selected PVY-ELISA-negative samples, RT-RPA, simplex RT-PCR and multiplex RT-PCR led to 1, 1 and 0 positive detections, receptively. Overall, RT-RPA and the two RT-PCR assays as well as ELISA exhibited an agreement of 96.6-98.7%, thus demonstrating the suitability of RT-RPA for large scale detection of PVY, irrespective of the strain type of the virus.


Assuntos
Bioensaio , Potyvirus/genética , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases/metabolismo , Transcrição Reversa/genética , Solanum tuberosum/virologia , Primers do DNA/genética , Doenças das Plantas/virologia , Sensibilidade e Especificidade , Temperatura , Fatores de Tempo
13.
Plant Biotechnol J ; 17(9): 1814-1822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30803101

RESUMO

CRISPR/Cas systems provide bacteria and archaea with molecular immunity against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a is an RNA-targeting CRISPR effector that provides protection against RNA phages. Here we report the repurposing of CRISPR/Cas13a to protect potato plants from a eukaryotic virus, Potato virus Y (PVY). Transgenic potato lines expressing Cas13a/sgRNA (small guide RNA) constructs showed suppressed PVY accumulation and disease symptoms. The levels of viral resistance correlated with the expression levels of the Cas13a/sgRNA construct in the plants. Our data further demonstrate that appropriately designed sgRNAs can specifically interfere with multiple PVY strains, while having no effect on unrelated viruses such as PVA or Potato virus S. Our findings provide a novel and highly efficient strategy for engineering crops with resistances to viral diseases.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Doenças das Plantas/virologia , RNA Guia de Cinetoplastídeos/genética , Solanum tuberosum/virologia
14.
Plant Dis ; 102(2): 382-390, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673524

RESUMO

Assessment of the existing PCR-gel electrophoresis-based methods for detection of Rx1 and Rx2, the genes that independently control extreme resistance (ER) to Potato virus X (PVX), indicated that the 5Rx1F/5Rx1R primer pair led to reliable detection of Rx1, whereas the 106Rx2F/106Rx2R primer pair detected Rx2 despite some nonspecific reactions in potato clones/cultivars without Rx2. However, the methodology is time consuming and does not differentiate the absence of Rx1/Rx2 from a failed PCR reaction. A newly designed primer pair that targets Rx1 and Rx2 as well as rx1 and rx2 produced an amplicon for all alleles. When the primer pair was combined with 5Rx1F/5Rx1R, respective amplicons were produced, although they were not distinguishable by regular agarose gel electrophoresis. When subjected to a high-resolution DNA melting (HRM) assay, two distinct melting profiles for Rx1 and rx1, respectively, were detected. Triplex PCR-gel electrophoresis and -HRM assay for detection of Rx1, Rx2, and rx1/rx2 were also performed. The efficacy of the HRM assays were validated in potato cultivars/clones with known phenotypes, indicating its potential for high-throughput selection of potato clones/cultivars carrying Rx1 or Rx2. Duplex PCR-HRM assays of over 600 progeny from 12 crosses involving various parents correctly detected the presence or absence of Rx1 in each progeny, allowing accurate prediction of the phenotype. Progeny that tested positive for Rx1 by HRM exhibited ER to PVX whereas progeny that tested negative for Rx1 were susceptible to PVX infection. The genotype of each parent and the possible presence of Nx in two Rx1-possessing parents are also discussed.


Assuntos
Antibiose/genética , Desnaturação de Ácido Nucleico , Doenças das Plantas/genética , Potexvirus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Seleção Genética , Solanum tuberosum/genética , Marcadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/virologia , Virulência
15.
Plant Dis ; 100(8): 1580-1585, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30686236

RESUMO

A survey of potatoes in a field in Hubei, China, for common potato viruses revealed that Potato virus S (PVS) was the most abundant virus. To unveil the strain identity of the virus, primers specific to the ordinary and/or Andean strains of PVS (i.e., PVSO and PVSA) were designed. RT-PCR using these primers successfully detected PVSO and PVSA in the samples. Sequence analysis of the amplicons confirmed the correctness of the RT-PCR assay. Two isolates, PVS HB24 and PVS HB7, representing PVSO and PVSA, respectively, were chosen for molecular and biological characterization. Both isolates contained a genome of 8,453 nt in length with six open reading frames. They shared a sequence identity of 79.5% at the complete genome sequence level. Phylogenetic analysis placed PVS HB24 and PVS HB7 to PVSO and PVSA clades, respectively. PVS HB24 induced chlorotic local lesions on the inoculated leaves but no visible symptom on the upper uninoculated leaves of Chenopodium quinoa after mechanical inoculation, whereas PVS HB7 induced both local and systemic symptoms on C. quinoa. ELISA and RT-PCR confirmed that PVS HB7 infected C. quinoa systemically whereas PVS HB24 failed to do so. Both isolates infected potato cv. Shepody and Solanum chacoense asymptomatically, but did not infect Nicotiana occidentalis and N. tobaccum cv. Samsun.

16.
Plant Dis ; 96(10): 1422-1429, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30727313

RESUMO

The responses of 14 potato cultivars to five Potato virus Y (PVY) isolates belonging to four strains (ordinary [PVYO], tobacco veinal necrosis [PVYN], N:O group [PVYN:O], and nonrecombinant potato tuber necrotic [PVYNTN]) were studied in primary and secondary infections. For the primary infection experiments, foliage symptoms were monitored daily after mechanical inoculation with a PVY isolate until harvest; and, for the secondary infection experiments, foliage symptoms were monitored regularly from plant emergence until harvest. Tuber symptoms (namely, tuber necrotic ringspots) were checked at harvest and monthly postharvest for up to 4 months. In both infections, symptoms varied significantly depending on potato cultivar and virus strain or isolate. In primary infections, local lesions occurred on inoculated leaves of 'AC Chaleur', 'Eramosa', 'Goldrush', 'Jemseg', 'Katahdin', 'Ranger Russet', and 'Yukon Gold' after inoculation with PVYO isolates, followed by systemic necrosis on latterly emerged uninoculated leaves. In contrast, plants of 'CalWhite', 'La Rouge', 'Red LaSoda', 'Russet Burbank', 'Russet Norkotah', and 'Superior' did not exhibit any visible symptoms on inoculated leaves but developed mild to severe mosaic on latterly emerged leaves after infection with PVYO isolates. In all cultivars, near-symptomless to mild mosaic was induced by PVYN and mild to severe mosaic by PVYN:O. PVYNTN induced mild to severe mosaic in plants of all cultivars except AC Chaleur, 'Cherokee', and Yukon Gold, which developed visible systemic necrosis. Necrotic ringspots were observed in tubers of PVYNTN-infected plants of AC Chaleur, Cherokee, and Yukon Gold. The tuber symptoms were also incited by PVYN-Jg on Cherokee. In secondary infections, the symptoms were generally more severe than primary infections even though the symptom types did not alter. As in the greenhouse, a clear symptom severity pattern (PVYO-FL > PVYO-RB > PVYNTN-Sl > PVYN:O-Mb58 > PVYN-Jg) was observed in AC Chaleur, Cherokee, Eramosa, Goldrush, Jemseg, Katahdin, Ranger Russet, and Yukon Gold in the field.

17.
Plant Dis ; 95(2): 113-119, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30743422

RESUMO

A field isolate of Potato virus Y (PVY) was collected in New Brunswick, Canada in 2007 due to unusual symptoms observed on different potato cultivars. To unveil the PVY strain identity, tobacco and potato bioassays, PVYO and PVYN-specific antibody-based enzyme-linked immunosorbent assays, and reverse-transcription polymerase chain reaction (PCR)-based genotyping were carried out. All the assays demonstrated that the isolate, designated as PVYO-FL in this study, belonged to the PVYO strain group. Greenhouse tests with the potato cvs. FL 1533 and Jemseg confirmed the severe nature of infection by PVYO-FL. The complete genome sequences of PVYO-FL and PVYO-RB, the latter a mild PVYO isolate, were determined. BLAST analysis revealed that the two isolates shared 97 and 98% sequence identities at the nucleotide and polyprotein levels, respectively. Further BLAST analysis unveiled that PVYO-FL shared 99.7% nucleotide sequence identity with PVYO-Oz, an isolate reported in New York, United States, whereas the PVYO-RB isolate shared 99.2% sequence identity with PVYO-139, a PVYO isolate reported in New Brunswick, Canada. A phylogenetic tree of available, full-length sequences of PVY isolates demonstrated two subgroups within the PVYO branch, one clustered with PVYO-RB and the other with PVYO-FL. Group-specific sense primers for differentiation of the two subgroups were developed and evaluated. A limited survey of potato tubers collected from a field plot at the Potato Research Centre, Agriculture and Agri-Food Canada, using the newly developed PCR primers, indicated that 65.3 and 2.4% of the PVYO-positive tubers were infected with PVYO isolates belonging to the PVYO-FL and PVYO-RB subgroups, respectively. Assessment of the pathogenicity of three representative isolates from each subgroup on the potato cv. Jemseg demonstrated that severe and mild symptoms were induced by the PVYO-FL-like and PVYO-RB-like isolates, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA