Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Epilepsia ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572689

RESUMO

OBJECTIVE: The purposes of this study were to explore the pharmacokinetics of perampanel (PER) in children with epilepsy, identify factors that contribute to pharmacokinetic variations among subjects, evaluate the connection between PER exposure and clinical outcome, and establish an evidence-based approach for tailoring individualized antiepileptic treatment in this specific population. METHODS: In this prospective study, PER plasma concentrations and genetic information on metabolic enzymes were obtained from 194 patients younger than 18 years. The disposition kinetics of PER in pediatric patients following oral dosing were characterized using nonlinear mixed effect models. The effective range for the plasma concentration of PER was determined by assessing the efficacy and safety of PER treatment and analyzing the relationship between drug exposure and clinical response. Monte Carlo simulations were then performed to evaluate and optimize the current dosing regimens. RESULTS: The pharmacokinetic profile of PER was adequately described by a one-compartment model with first-order absorption and elimination. Body weight, total bilirubin level, and concomitant oxcarbazepine were found to have significant influences on PER pharmacokinetics. Model estimates of apparent clearance and volume of distribution were .016 ± .009 L/h/kg and 1.47 ± .78 L/kg, respectively. The effective range predicted from plasma concentration data in responders was 215-862 µg/L. Dosing scenarios stratified according to essential covariates were proposed through simulation analysis. SIGNIFICANCE: In this study, we captured the pharmacokinetic/pharmacodynamic characteristics of PER in pediatric epilepsy patients through analysis of real-world data and adopted a pharmacometric approach to support an individualized dosing strategy for PER in this specific population.

2.
Microorganisms ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38674660

RESUMO

Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.

3.
Anal Chem ; 96(14): 5615-5624, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544396

RESUMO

Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment. Herein, we reported the development of a novel LD-targeting fluorescent probe (TDTI) with AIE performance, which was expected to realize the integration of cancer diagnosis through LD visualization and cancer treatment via PDT. We demonstrated that TDTI, with typical AIE characteristics and excellent photostability, could target LDs with high specificity, which enables the dynamic tracking of LDs in living cells, specific imaging of LDs in zebrafish, and the differentiation of cancer cells from normal cells for cancer diagnosis. Meanwhile, TDTI exhibited fast ROS generation ability (achieving equilibrium within 60 s) under white light irradiation (10 mW/cm2). The cell apoptosis assay revealed that TDTI effectively induced growth inhibition and apoptosis of HeLa cells. Further, the results of PDT in vivo indicated that TDTI had a good antitumor effect on the tumor-bearing mice model. Collectively, these results highlight the potential utility of the dual-functional fluorescent probe TDTI in the integrated diagnosis and treatment of cancer.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Animais , Camundongos , Células HeLa , Corantes Fluorescentes , Gotículas Lipídicas/metabolismo , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
4.
BMC Genomics ; 25(1): 235, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438835

RESUMO

BACKGROUND: Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS: In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS: Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Dactylis , Filogenia , Hibridização Genômica Comparativa , RNA Ribossômico , Genômica
5.
Genes (Basel) ; 15(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397200

RESUMO

Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, no studies have reported reference genes suitable for Sudan grass. Therefore, we found eight candidate reference genes, including UBQ10, HIS3, UBQ9, Isoform0012931, PP2A, ACP2, eIF4α, and Actin, under salt stress (NaCl), drought stress (DR), acid aluminum stress (AlCl3), and methyl jasmonate treatment (MeJA). By using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked eight reference genes on the basis of their expression stabilities. The results indicated that the best reference gene was PP2A under all treatments. eIF4α can be used in CK, MeJA, NaCl, and DR. HIS3 can serve as the best reference gene in AlCl3. Two target genes (Isoform0007606 and Isoform0002387) belong to drought-stress-response genes, and they are highly expressed in Sudan grass according to transcriptome data. They were used to verify eight candidate reference genes under drought stress. The expression trends of the two most stable reference genes were similar, but the trend in expression for Actin showed a significant difference. The reference genes we screened provided valuable guidance for future research on Sudan grass.


Assuntos
Piper , Sorghum , Estresse Fisiológico/genética , Transcrição Reversa , Sorghum/genética , Genes de Plantas , Piper/genética , Actinas/genética , Cloreto de Sódio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação da Expressão Gênica de Plantas
6.
Sci Total Environ ; 916: 170205, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272075

RESUMO

Salinity poses a significant threat to plant growth and development. The root microbiota plays a key role in plant adaptation to saline environments. Nevertheless, it remains poorly understood whether and how perennial grass plants accumulate specific root-derived bacteria when exposed to salinity. Here, we systematically analyzed the composition and variation of rhizosphere and endophytic bacteria, as well as root exudates in perennial ryegrass differing in salt tolerance grown in unsterilized soils with and without salt. Both salt-sensitive (P1) and salt-tolerant (P2) perennial ryegrass genotypes grew better in unsterilized soils compared to sterilized soils under salt stress. The rhizosphere and endophytic bacteria of both P1 and P2 had lower alpha-diversity under salt treatment compared to control. The reduction of alpha-diversity was more pronounced for P1 than for P2. The specific root-derived bacteria, particularly the genus Pseudomonas, were enriched in rhizosphere and endophytic bacteria under salt stress. Changes in bacterial functionality induced by salt stress differed in P1 and P2. Additionally, more root exudates were altered under salt stress in P2 than in P1. The content of important root exudates, mainly including phenylpropanoids, benzenoids, organic acids, had a significantly positive correlation with the abundance of rhizosphere and endophytic bacteria under salt stress. The results indicate that the interactions between root-derived bacteria and root exudates are crucial for the salt tolerance of perennial ryegrass, which provides a potential strategy to manipulate root microbiome for improved stress tolerance of perennial grass species.


Assuntos
Lolium , Tolerância ao Sal , Poaceae , Bactérias , Solo , Exsudatos e Transudatos , Rizosfera , Raízes de Plantas/microbiologia , Microbiologia do Solo
7.
Epilepsy Behav ; 151: 109601, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194771

RESUMO

This study aims to investigate the effects on the pharmacokinetic (PK) of lacosamide (LCM), and to guide the individual dosing regimens for children and ones with poor medication adherence. Population PK research was performed based on 164 plasma samples of 113 pediatric patients aged from 1.75 to 14.42 years old. The PK characteristic of LCM was developed by a one-compartment model with first-order elimination. The typical value of apparent clearance (CL) and apparent volume of distribution (Vd) was 1.91 L·h-1 and 56.53 L respectively. In the final model, the variability of CL was significantly associated with the body surface area (BSA) and elevated uric acid (UA) level. In contrast, the impact of some prevalent anti-seizure medicines, such as valproic acid, levetiracetam, oxcarbazepine, lamotrigine, and perampanel, and gene polymorphisms of Cytochrome P450 (CYP)2C19, ATP-binding cassette (ABC)B1, and ABCC2 had no clinical significance on the PK parameters of LCM. BSA-based dosing regimen of LCM was provided according to Monte Carlo simulation approach; while the dosage should reduce half in patients with an UA level of more than 400 µmol·L-1 comparing with an UA level of 100 µmol·L-1. Individualize remedial doses of about 0.5- to 1.5-fold of regular doses were recommended in six common scenarios of missed or delayed doses, that depended on the delayed time. In current study, the population PK model of LCM in children with epilepsy was developed successfully. The BSA-based dosing regimen and individualized remedial strategy were recommended to guarantee the precise administration of LCM.


Assuntos
Epilepsia , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Lacosamida/uso terapêutico , Epilepsia/tratamento farmacológico , Anticonvulsivantes , Levetiracetam/uso terapêutico , Oxcarbazepina/uso terapêutico
8.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958746

RESUMO

Tillering is a special type of branching and one of the important contributors to the yield of cereal crops. Strigolactone and sucrose play a vital role in controlling tiller formation, but their mechanism has not been elucidated completely in most crops. Orchardgrass (Dactylis glomerata L.) is an important perennial forage with prominent tillering ability among crops. To date, the mechanism of tillering in orchardgrass is still largely unknown. Therefore, we performed a transcriptome and miRNA analysis to reveal the potential RNA mechanism of tiller formation under strigolactone and sucrose treatment in orchardgrass. Our results found that D3, COL5, NCED1, HXK7, miRNA4393-z, and miRNA531-z could be key factors to control tiller bud development in orchardgrass. In addition, strigolactones might affect the ABA biosynthesis pathway to regulate the tiller bud development of orchardgrass, which may be related to the expression changes in miRNA4393-z, NCED1, and D10. miRNA531-z could be involved in the interaction of strigolactones and sucrose in regulating tillering. These results will be further used to clarify the potential mechanism of tillering for breeding new high-tillering and high-production orchardgrass varieties and beneficial to improving the production and reproduction of crops.


Assuntos
Dactylis , Melhoramento Vegetal , Dactylis/genética , Perfilação da Expressão Gênica , Sacarose , Transcriptoma
9.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003372

RESUMO

Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.


Assuntos
Arabidopsis , Dactylis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia
10.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003564

RESUMO

Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.


Assuntos
Dactylis , Melhoramento Vegetal , Dactylis/genética , Perfilação da Expressão Gênica , Poaceae/genética , Transcriptoma , Genótipo , Nitrogênio
11.
Cancer Cell Int ; 23(1): 214, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752452

RESUMO

BACKGROUND: Immunoblockade therapy based on the PD-1 checkpoint has greatly improved the survival rate of patients with skin cutaneous melanoma (SKCM). However, existing anti-PD-1 therapeutic efficacy prediction markers often exhibit a poor situation of poor reliability in identifying potential beneficiary patients in clinical applications, and an ideal biomarker for precision medicine is urgently needed. METHODS: 10 multicenter cohorts including 4 SKCM cohorts and 6 immunotherapy cohorts were selected. Through the analysis of WGCNA, survival analysis, consensus clustering, we screened 36 prognostic genes. Then, ten machine learning algorithms were used to construct a machine learning-derived immune signature (MLDIS). Finally, the independent data sets (GSE22153, GSE54467, GSE59455, and in-house cohort) were used as the verification set, and the ROC index standard was used to evaluate the model. RESULTS: Based on computing framework, we found that patients with high MLDIS had poor overall survival and has good prediction performance in all cohorts and in-house cohort. It is worth noting that MLDIS performs better in each data set than almost all models which from 51 prognostic signatures for SKCM. Meanwhile, high MLDIS have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level of infiltration of immune cells in the tumor microenvironment. Additionally, patients suffering from SKCM with high MLDIS were more sensitive to immunotherapy. CONCLUSIONS: Our study identified that MLDIS could provide new insights into the prognosis of SKCM and predict the immunotherapy response in patients with SKCM.

12.
Plant Biotechnol J ; 21(11): 2348-2357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530223

RESUMO

Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.


Assuntos
Embaralhamento de DNA , Milhetes , Humanos , Milhetes/genética , Estudo de Associação Genômica Ampla , Multiômica , Genômica/métodos
13.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446266

RESUMO

Heat stress can hinder the growth of perennial ryegrass (Lolium perenne L.). Methyl jasmonate (MeJA) applied exogenously can increase heat stress tolerance in plants; however, the regulatory mechanisms involved in heat tolerance mediated by MeJA are poorly understood in perennial ryegrass. Here, the microRNA (miRNA) expression profiles of perennial ryegrass were assessed to elucidate the regulatory pathways associated with heat tolerance induced by MeJA. Plants were subjected to four treatments, namely, control (CK), MeJA pre-treatment (T), heat stress treatment (H), and MeJA pre-treatment + heat stress (TH). According to the results, 102 miRNAs were up-regulated in all treatments, with 20, 27, and 33 miRNAs being up-regulated in the T, H, and TH treatment groups, respectively. The co-expression network analysis between the deferentially expressed miRNAs and their corresponding target genes showed that 20 miRNAs modulated 51 potential target genes. Notably, the miRNAs that targeted genes related to with regards to heat tolerance were driven by MeJA, and they were involved in four pathways: novel-m0258-5p mediated signal transduction, novel-m0350-5p mediated protein homeostasis, miR397-z, miR5658-z, and novel-m0008-5p involved in cell wall component, and miR1144-z and miR5185-z dominated chlorophyll degradation. Overall, the findings of this research paved the way for more research into the heat tolerance mechanism in perennial ryegrass and provided a theoretical foundation for developing cultivars with enhanced heat tolerance.


Assuntos
Lolium , MicroRNAs , Termotolerância , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
14.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511020

RESUMO

White clover is a widely grown temperate legume forage with high nutritional value. Research on the functional genomics of white clover requires a stable and efficient transformation system. In this study, we successfully induced calluses from the cotyledons and leaves of 10 different white clover varieties. The results showed that the callus formation rate in the cotyledons did not vary significantly among the varieties, but the highest callus formation rate was observed in 'Koala' leaves. Subsequently, different concentrations of antioxidants and hormones were tested on the browning rate and differentiation ability of the calluses, respectively. The results showed that the browning rate was the lowest on MS supplemented with 20 mg L-1 AgNO3 and 25 mg L-1 VC, respectively, and the differentiation rate was highest on MS supplemented with 1 mg L-1 6-BA, 1 mg L-1 KT and 0.5 mg L-1 NAA. In addition, the transformation system for Agrobacterium tumefaciens-mediated transformation of 4-day-old leaves was optimized to some extent and obtained a positive callus rate of 8.9% using green fluorescent protein (GFP) as a marker gene. According to our data, by following this optimized protocol, the transformation efficiency could reach 2.38%. The results of this study will provide the foundation for regenerating multiple transgenic white clover from a single genetic background.


Assuntos
Trifolium , Trifolium/genética , Agrobacterium tumefaciens/genética , Genômica , Medicago
15.
Indian J Dermatol Venereol Leprol ; 89(5): 680-687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317750

RESUMO

Background The association between macrophage migration inhibitory factor (MIF)-173G/C polymorphism and psoriasis risk has been reported in several studies with inconsistent conclusions. Aims This study aims to obtain a more convincing estimate of the relationship between the MIF-173G/C polymorphism and psoriasis risk. Methods Web of Science, EMBASE, PubMed, Wan Fang Database and Chinese National Knowledge Infrastructure (CNKI) were searched up to September 2021 and eligible studies were collected. The pooled odds ratios with 95% confidence intervals were calculated to estimate the effects of MIF-173G/C polymorphism on psoriasis risk under different genetic models. All analyses were conducted using the STATA12.0 software. Results A total of 1101 psoriasis cases and 1320 healthy controls from 6 relevant studies were included in this meta-analysis. Pooled analysis suggested that MIF-173G/C polymorphism was associated with increased psoriasis risk under the allelic model (C vs. G: odds ratio = 1.30, 95% confidence interval = 1.04-1.63, P = 0.020), heterozygous model (GC vs. GG: odds ratio = 1.53, 95% confidence interval = 1.05-2.22, P = 0.027) and dominant model (CC + GC vs. GG: odds ratio = 1.51, 95% confidence interval = 1.05-2.18, P = 0.027). Limitation Very few studies on the MIF-173G/C polymorphism in psoriasis have been reported till now, thus the number of studies included in the present meta-analysis was relatively small. Due to the number of studies being relatively small and the lack of raw data, stratified analysis by ethnicity or type of psoriasis was not carried out. Conclusion This meta-analysis demonstrated that MIF-173G/C polymorphism might be related to psoriasis risk. Carriers of the C allele and the GC genotype might have higher odds to present with psoriasis.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Genótipo , Heterozigoto , Fatores Inibidores da Migração de Macrófagos/genética , Polimorfismo Genético/genética , Fatores de Risco
16.
Talanta ; 265: 124819, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343359

RESUMO

Alcoholic liver disease (ALD) has received extensive attention because of the increasing alcohol consumption globally as well as its high morbidity. It is reported that absorbed alcohol can cause lipid metabolism disorder and mitochondria dysfunction, so here in this work, we planned to study the microscopic changes of the two organelles, lipid droplets (LDs) and mitochondria in hepatocyte, under the stimulation of alcohol, hoping to present some meaningful information for the theranostics of ALD by the technique of fluorescence imaging. Guided by theoretical calculation, two fluorescent probes, named CBu and CBuT, were rationally designed. Although constructed by the same chromophore scaffold, they stained different organelles efficiently and emitted distinctively. CBu with high lipophilicity, ascribed to the two butyl groups, can selectively localize in LDs with green fluorescence, while CBuT bearing a triphenylphosphine unit can specifically target mitochondria due to electrostatic interactions with near-infrared (NIR) fluorescence. Both probes displayed remarkable selectivity and sensitivity to polarity, free from the environmental interferences including viscosity, pH and other bio-species. With these two probes, the accumulation of LDs and polarity decrease in mitochondria were clearly monitored at the green and red channels, respectively, in the ALD cell model. CBuT was further applied to image the mice with ALD in vivo. In short, we have confirmed the valuable organelles, LDs and mitochondria, for ALD study and provided two potent molecular tools to visualize their changes through fluorescence imaging, which would be favorable for the further development of theranostics for ALD.


Assuntos
Gotículas Lipídicas , Hepatopatias Alcoólicas , Animais , Camundongos , Gotículas Lipídicas/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Mitocôndrias , Hepatopatias Alcoólicas/metabolismo
17.
Carbohydr Polym ; 317: 121108, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364942

RESUMO

It had been shown that lentinan (LNT) was mainly distributed in the liver after intravenous administration. The study aimed to investigate the integrated metabolic processes and mechanisms of LNT in the liver, as these have not been thoroughly explored. In current work, 5-([4,6-dichlorotriazin-2-yl] amino) fluorescein and cyanine 7 were used to label LNT for tracking its metabolic behavior and mechanisms. Near-infrared imaging demonstrated that LNT was captured mainly by the liver. Kupffer cell (KC) depletion reduced LNT liver localization and degradation in BALB/c mice. Moreover, experiments with Dectin-1 siRNA and Dectin-1/Syk signaling pathway inhibitors showed that LNT was mainly taken up by KCs via the Dectin-1/Syk pathway and promoted lysosomal maturation in KCs via this same pathway, which in turn promoted LNT degradation. These empirical findings offer novel insights into the metabolism of LNT in vivo and in vitro, which will facilitate the further application of LNT and other ß-glucans.


Assuntos
Cogumelos Shiitake , Camundongos , Animais , Células de Kupffer , Lentinano/farmacologia , Transdução de Sinais , Polissacarídeos
18.
Cell Biol Int ; 47(8): 1327-1343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191290

RESUMO

The mechanism of m6A modification in HPV-related cervical cancer remains unclear. This study explored the role of methyltransferase components in HPV-related cervical cancer and the mechanism. The levels of methyltransferase components and autophagy, ubiquitylation of RBM15 protein and the co-localization of lysosomal markers LAMP2A and RBM15 were measured. CCK-8 assay, flow cytometry, clone formation experiment and immunofluorescence assay were conducted to measure cell proliferation. The mouse tumor model was developed to study the cell growth in vivo. The binding of RBM15 to c-myc mRNA and m6A modifcation of c-myc mRNA were analyzed. The expressions of METTL3, RBM15 and WTAP were higher in HPV-positive cervical cancer cell lines than those in HPV-negative cells, especially RBM15. HPV-E6 knock-down inhibited the expression of RBM15 protein and promoted its degradation, but couldn't change its mRNA level. Autophagy inhibitor and proteasome inhibitor could reverse those effects. HPV-E6 siRNA could not enhance ubiquitylation modification of RBM15, but could enhance autophagy and the co-localization of RBM15 and LAMP2A. RBM15 overexpression could enhance cell proliferation, block the inhibitory effects of HPV-E6 siRNA on cell growth, and these effects could be reserved by cycloeucine. RBM15 could bind to c-myc mRNA, resulting in an increase to m6A level and protein expression of c-myc, which could be blocked by cycloeucine. HPV-E6 can downregulate autophagy, inhibit the degradation of RBM15 protein, induce the accumulation of intracellular RBM15, and increase the m6A modification on c-myc mRNA, resulting in an increase of c-myc protein and a growth promotion for cervical cancer cells.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Proliferação de Células , Metiltransferases/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero/genética
19.
Int J Mol Med ; 51(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37114529

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the fluorescence microscopy data shown in Fig. 6A and B were strikingly similar to data appearing in different form in Fig. 7 in a previously published paper [Lv Z­D, Na D, Liu F­N, Du Z­M, Sun Z, Li Z, Ma X­Y, Wang Z­N and Xu H­M: Induction of gastric cancer cell adhesion through transforming growth factor­beta1­mediated peritoneal fibrosis. J Exp Clin Cancer Res 29: 139, 2010], which featured some of the same authors, although the data were shown to portray results obtained under different experimental conditions. Furthermore, the data in Fig. 7A for the 'TGF­ß1' and the 'TGF­ß1 + siRNAcon' experiments contained an overlapping section, such that these data appeared to have been derived from the same original source, even though they were intended to show the results from differently performed experiments. Owing to the fact that the contentious data in the above article had already been published prior to its submission to International Journal of Molecular Medicine, and due to a lack of overall confidence in the presented data, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 29: 373­379, 2012; DOI: 10.3892/ijmm.2011.852].

20.
Genes (Basel) ; 14(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37107682

RESUMO

Plant-specific TCP transcription factors regulate several plant growth and development processes. Nevertheless, little information is available about the TCP family in orchardgrass (Dactylis glomerata L.). This study identified 22 DgTCP transcription factors in orchardgrass and determined their structure, phylogeny, and expression in different tissues and developmental stages. The phylogenetic tree classified the DgTCP gene family into two main subfamilies, including class I and II supported by the exon-intron structure and conserved motifs. The DgTCP promoter regions contained various cis-elements associated with hormones, growth and development, and stress responses, including MBS (drought inducibility), circadian (circadian rhythms), and TCA-element (salicylic acid responsiveness). Moreover, DgTCP9 possibly regulates tillering and flowering time. Additionally, several stress treatments upregulated DgTCP1, DgTCP2, DgTCP6, DgTCP12, and DgTCP17, indicting their potential effects regarding regulating responses to the respective stress. This research offers a valuable basis for further studies of the TCP gene family in other Gramineae and reveals new ideas for increasing gene utilization.


Assuntos
Dactylis , Perfilação da Expressão Gênica , Dactylis/genética , Dactylis/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Íntrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA