Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
FASEB J ; 38(10): e23705, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38805171

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a notoriously dismal prognosis. As a competitive inhibitor of DNA synthesis, gemcitabine is the cornerstone drug for treating PDAC at all stages. The therapeutic effect of gemcitabine, however, is often hindered by drug resistance, and the underlying mechanisms remain largely unknown. It is unclear whether their response to chemotherapeutics is regulated by endocrine regulators, despite the association between PDAC risk and endocrine deregulation. Here, we show that prolactin receptor (PRLR) synergizes with gemcitabine in both in vitro and in vivo treatment of PDAC. Interestingly, PRLR promotes the expression of miR-4763-3p and miR-3663-5p, two novel miRNAs whose functions are unknown. Furthermore, the analysis of transcriptome sequencing data of tumors from lactating mouse models enriches the PPP pathway, a multifunctional metabolic pathway. In addition to providing energy, the PPP pathway mainly provides a variety of raw materials for anabolism. We demonstrate that two key enzymes of the pentose phosphate pathway (PPP), G6PD and TKT, are directly targeted by miR-4763-3p and miR-3663-5p. Notably, miR-4763-3p and miR-3663-5p diminish the nucleotide synthesis of the PPP pathway, thereby increasing gemcitabine sensitivity. As a result, PRLR harnesses these two miRNAs to suppress PPP and nucleotide synthesis, subsequently elevating the gemcitabine sensitivity of PDAC cells. Also, PDAC tissues and tumors from LSL-KrasG12D/+, LSL-Trp53R172H/+, and PDX1-cre (KPC) mice exhibit downregulation of PRLR. Bisulfite sequencing of PDAC tissues revealed that PRLR downregulation is due to epigenetic methylation. In this study, we show for the first time that the endocrine receptor PRLR improves the effects of gemcitabine by boosting two new miRNAs that block the PPP pathway and nucleotide synthesis by inhibiting two essential enzymes concurrently. The PRLR-miRNAs-PPP axis may serve as a possible therapeutic target to supplement chemotherapy advantages in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Desoxicitidina , Gencitabina , Glucosefosfato Desidrogenase , MicroRNAs , Neoplasias Pancreáticas , Receptores da Prolactina , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Receptores da Prolactina/metabolismo , Receptores da Prolactina/genética , Camundongos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Antimetabólitos Antineoplásicos/farmacologia
3.
Acta Biomater ; 177: 456-471, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331131

RESUMO

Cetuximab (Cet) and oxaliplatin (OXA) are used as first-line drugs for patients with colorectal carcinoma (CRC). In fact, the heterogeneity of CRC, mainly caused by K-ras mutations and drug resistance, undermines the effectiveness of drugs. Recently, a hydrophobic prodrug, (1E,4E)-6-((S)-1-(isopentyloxy)-4-methylpent-3-en-1-yl)-5,8-dimethoxynaphthalene-1,4­dione dioxime (DMAKO-20), has been shown to undergo tumor-specific CYP1B1-catalyzed bioactivation. This process results in the production of nitric oxide and active naphthoquinone mono-oximes, which exhibit specific antitumor activity against drug-resistant CRC. In this study, a Cet-conjugated bioresponsive DMAKO-20/PCL-PEOz-targeted nanocodelivery system (DMAKO@PCL-PEOz-Cet) was constructed to address the issue of DMAKO-20 dissolution and achieve multitargeted delivery of the cargoes to different subtypes of CRC cells to overcome K-ras mutations and drug resistance in CRC. The experimental results demonstrated that DMAKO@PCL-PEOz-Cet efficiently delivered DMAKO-20 to both K-ras mutant and wild-type CRC cells by targeting the epidermal growth factor receptor (EGFR). It exhibited a higher anticancer effect than OXA in K-ras mutant cells and drug-resistant cells. Additionally, it was observed that DMAKO@PCL-PEOz-Cet reduced the expression of glutathione peroxidase 4 (GPX4) in CRC cells and significantly inhibited the growth of heterogeneous HCT-116 subcutaneous tumors and patient-derived tumor xenografts (PDX) model tumors. This work provides a new strategy for the development of safe and effective approaches for treating CRC. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for the treatment of colorectal carcinoma (CRC) using the bioresponsible Cet-conjugated PCL-PEOz/DMAKO-20 nanodelivery system (DMAKO@PCL-PEOz-Cet) prepared with Cet and PCL-PEOz for the targeted transfer of DMAKO-20, which is an anticancer multitarget drug that can even prevent drug resistance, to wild-type and K-ras mutant CRC cells. DMAKO@PCL-PEOz-Cet, in the form of nanocrystal micelles, maintained stability in peripheral blood and efficiently transported DMAKO-20 to various subtypes of colorectal carcinoma cells, overcoming the challenges posed by K-ras mutations and drug resistance. The system's secure and effective delivery capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the K-ras mutation and drug resistance of CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mutação , Concentração de Íons de Hidrogênio
4.
Research (Wash D C) ; 7: 0300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314086

RESUMO

Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from KrasG12D/+;Trp53R172H/+; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.

5.
Oncogenesis ; 13(1): 10, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424455

RESUMO

Endocrine receptors play an essential role in tumor metabolic reprogramming and represent a promising therapeutic avenue in pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a nutrient-deprived microenvironment. To meet their ascendant energy demands, cancer cells can internalize extracellular proteins via macropinocytosis. However, the roles of endocrine receptors in macropinocytosis are not clear. In this study, we found that progesterone receptor (PGR), a steroid-responsive nuclear receptor, is highly expressed in PDAC tissues obtained from both patients and transgenic LSL-KrasG12D/+; LSL-Trp53R172H/+; PDX1-cre (KPC) mice. Moreover, PGR knockdown restrained PDAC cell survival and tumor growth both in vitro and in vivo. Genetic and pharmacological PGR inhibition resulted in a marked attenuation of macropinocytosis in PDAC cells and subcutaneous tumor models, indicating the involvement of this receptor in macropinocytosis regulation. Mechanistically, PGR upregulated CDC42, a critical regulator in macropinocytosis, through PGR-mediated transcriptional activation. These data deepen the understanding of how the endocrine system influences tumor progression via a non-classical pathway and provide a novel therapeutic option for patients with PDAC.

6.
Reprod Sci ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263477

RESUMO

Ovarian cancer (OV) is a highly aggressive malignancy with poor prognosis due to recurrence and drug resistance. Therefore, it is imperative to investigate the key molecular mechanisms underlying OV progression in order to develop promising diagnostic and therapeutic interventions. Although the importance of hematological and neurological expressed 1 (HN1) protein in hemopoietic cell and neurological development has been well-established, its function in cancer, particularly in OV, remains uncertain. In this study, we compared the expression of HN1 in ovarian cancers and para-tumor tissues and predicted potential related signaling pathways through enrichment analysis. In order to confirm the role of HN1 in vitro and vivo, we carried out a variety of experiments including bioinformation analysis, colony formation, flow cytometry analysis, and subcutaneous tumor models. The results demonstrated that HN1 was upregulated in OV and was negatively associated with clinical prognosis. Moreover, we observed that HN1 enhances cell proliferation, migration, and drug resistance, while suppressing apoptosis in OV cells. Notably, we discovered that HN1 functions as a novel regulator of mTOR pathways. Our findings suggest that HN1-mediated mTOR regulation facilitates OV advancement and targeting HN1 could provide a promising therapeutic approach for clinical OV treatment.

7.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247644

RESUMO

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeostase , Temperatura Alta , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
8.
Funct Integr Genomics ; 23(2): 90, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933061

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is insidious and highly malignant with extremely poor prognosis and drug resistance to current chemotherapies. Therefore, there is a critical need to investigate the molecular mechanism underlying PDAC progression to develop promising diagnostic and therapeutic interventions. In parallel, vacuolar protein sorting (VPS) proteins, involved in the sorting, transportation, and localization of membrane proteins, have gradually attracted the attention of researchers in the development of cancers. Although VPS35 has been reported to promote carcinoma progression, the specific molecular mechanism is still unclear. Here, we determined the impact of VPS35 on the tumorigenesis of PDAC and explored the underlying molecular mechanism. We performed a pan-cancer analysis of 46 VPS genes using RNAseq data from GTEx (control) and TCGA (tumor) and predicted potential functions of VPS35 in PDAC by enrichment analysis. Furthermore, cell cloning experiments, gene knockout, cell cycle analysis, immunohistochemistry, and other molecular and biochemical experiments were used to validate the function of VPS35. Consequently, VPS35 was found overexpressed in multiple cancers and correlated with the poor prognosis of PDAC. Meanwhile, we verified that VPS35 could modulate the cell cycle and promote tumor cell growth in PDAC. Collectively, we provide solid evidence that VPS35 facilitates the cell cycle progression as a critical novel target in PDAC clinical therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinógenos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proliferação de Células/genética , Ciclo Celular/genética , Transporte Proteico , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Neoplasias Pancreáticas
9.
Matrix Biol ; 117: 31-45, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849082

RESUMO

The extracellular matrix (ECM), as an important component of the tumor microenvironment, exerts various roles in tumor formation. Mitochondrial dynamic disorder is closely implicated in tumorigenesis, including hyperfission in HCC. We aimed to determine the influence of the ECM-related protein CCBE1 on mitochondrial dynamics in HCC. Here, we found that CCBE1 was capable of promoting mitochondrial fusion in HCC. Initially, CCBE1 expression was found to be significantly downregulated in tumors compared with nontumor tissues, which resulted from hypermethylation of the CCBE1 promoter in HCC. Furthermore, CCBE1 overexpression or treatment with recombinant CCBE1 protein dramatically inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, CCBE1 functioned as an inhibitor of mitochondrial fission by preventing the location of DRP1 on mitochondria through inhibiting its phosphorylation at Ser616 by directly binding with TGFßR2 to inhibit TGFß signaling activity. In addition, a higher percentage of specimens with higher DRP1 phosphorylation was present in patients with lower CCBE1 expression than in patients with higher CCBE1 expression, which further confirmed the inhibitory effect of CCBE1 on DRP1 phosphorylation at Ser616. Collectively, our study highlights the crucial roles of CCBE1 in mitochondrial homeostasis, suggesting strong evidence for this process as a potential therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dinâmica Mitocondrial , Neoplasias Hepáticas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proliferação de Células , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Supressoras de Tumor
10.
BMC Pharmacol Toxicol ; 23(1): 54, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864505

RESUMO

BACKGROUND: Liver fibrosis is a wound-healing response to chronic injury, featuring with excess accumulation of extracellular matrix secreted by the activated hepatic stellate cells (HSC). Disulfiram (DSF), also known as Antabuse, has been used for the treatment of alcohol addiction and substance abuse. Recently, overwhelming studies had revealed anti-cancer effects of DSF in multiple cancers, including liver cancer. But the actual effects of DSF on liver fibrosis and liver function remain unknown. METHODS: In this study, we evaluated the effects of low-dose DSF in CCl4- and Bile Duct Ligation (BDL)-induced hepatic fibrosis rat models. Cell proliferation was detected by using the Cell-Light™ EdU Apollo®567 Cell Tracking Kit. Cell apoptosis was analyzed using a TdT-mediated dUTP nick end labeling (TUNEL) kit, viability was measured with Cell Counting Kit-8(CCK8). Relative mRNA expression of pro-fibrogenic was assessed using quantitative RT-PCR. The degree of liver fibrosis, activated HSCs, were separately evaluated through Sirius Red-staining, immunohistochemistry and immunofluorescence. Serum alanine aminotransferase (ALT) and asparagine aminotransferase (AST) activities were detected with ALT and AST detecting kits using an automated analyzer. RESULTS: Liver fibrosis was distinctly attenuated while liver functions were moderately ameliorated in the DSF-treated group. Activation and proliferation of primary rat HSCs isolated from rat livers were significantly suppressed by low-dose DSF. DSF also inhibited the viability of in vitro cultured rat or human HSC cells dose-dependently but had no repressive role on human immortalized hepatocyte THLE-2 cells. Interestingly, upon DSF treatment, the viability of LX-2 cells co-cultured with THLE-2 was significantly inhibited, while that of THLE-2 co-cultured with LX-2 was increased. Further study indicated that HSCs apoptosis was increased in DSF/CCl4-treated liver samples. These data indicated that DSF has potent anti-fibrosis effects and protective effects toward hepatocytes and could possibly be repurposed as an anti-fibrosis drug in the clinic. CONCLUSIONS: DSF attenuated ECM remodeling through suppressing the transformation of quiet HSCs into proliferative, fibrogenic myofibroblasts in hepatic fibrosis rat models. DSF provides a novel approach for the treatment of liver fibrosis.


Assuntos
Dissulfiram , Células Estreladas do Fígado , Animais , Ductos Biliares/metabolismo , Proliferação de Células , Dissulfiram/metabolismo , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Fígado , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ratos
11.
Mol Ther ; 30(10): 3284-3299, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35765243

RESUMO

Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.


Assuntos
Neoplasias Colorretais , Terbinafina , Animais , Antifúngicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Desoxirribonucleotídeos , Disbiose , Glucosefosfato Desidrogenase , Camundongos , NADP , Terbinafina/farmacologia
12.
J Immunol Res ; 2022: 5665964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478937

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and the patients are generally diagnosed with distant metastasis. Liver is one of the preferred organs of distant metastasis, and liver metastasis is the leading cause of death in PDAC. Diet-induced obesity (DIO) is a risk factor for PDAC, and it remains unclear whether and how DIO contributes to liver metastasis of PDAC. In our study, we found that DIO significantly promoted PDAC liver metastasis compared with normal diet (ND) in intrasplenic injection mouse model. RNA-seq analysis for liver metastasis nodules showed that the various chemokines and several chemokine receptors were altered between ND and DIO samples. The expression levels of CX3CL1 and CX3CR1 were significantly upregulated in DIO-induced liver metastasis of PDAC compared to ND. Increased CX3CL1 promoted the recruitment of CX3CR1-expressing pancreatic tumor cells. Taken together, our data demonstrated that DIO promoted PDAC liver metastasis via CX3CL1/CX3CR1 axis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Receptor 1 de Quimiocina CX3C , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quimiocina CX3CL1/genética , Dieta , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Obesidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
13.
Oncogene ; 41(8): 1203-1215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082383

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/-/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático
14.
Oncogene ; 40(23): 3959-3973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33986509

RESUMO

Metastasis is a major cause of cancer-related deaths. Tumor-intrinsic properties can determine whether tumor metastasis occurs or not. Here, by comparing the gene expression patterns in primary colorectal cancer (CRC) patients with or without metastasis, we found that Collagen Triple Helix Repeat Containing 1 (CTHRC1) in primary CRC served as a metastasis-associated gene. Animal experiments verified that CTHRC1 secreted by CRC cells promoted hepatic metastasis, which was closely correlated with macrophage infiltration. Depletion of macrophages by liposomal clodronate largely abolished the promoting effect of CTHRC1 on CRC liver metastasis. Furthermore, we demonstrated that CTHRC1 modulated macrophage polarization to M2 phenotypes through TGF-ß signaling. A mechanistic study revealed that CTHRC1 bound directly to TGF-ß receptor II and TGF-ß receptor III, stabilized the TGF-ß receptor complex, and activated TGF-ß signaling. The combination treatment of CTHRC1 monoclonal antibody and anti-PD-1 blocking antibody effectively suppressed CRC hepatic metastasis. Taken together, our data demonstrated that CTHRC1 is an intrinsic marker of CRC metastasis and further revealed that CTHRC1 promoted CRC liver metastasis by reshaping infiltrated macrophages through TGF-ß signaling, suggesting that CTHRC1 could be a potential biomarker for the early prediction of and a therapeutic target of CRC hepatic metastasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Taxa de Sobrevida , Resultado do Tratamento
15.
Theranostics ; 11(8): 3898-3915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664869

RESUMO

Prolactin binding to the prolactin receptor exerts pleiotropic biological effects in vertebrates. The prolactin receptor (PRLR) has multiple isoforms due to alternative splicing. The biological roles and related signaling of the long isoform (PRLR-LF) have been fully elucidated. However, little is known about the short isoform (PRLR-SF), particularly in cancer development and metabolic reprogramming, a core hallmark of cancer. Here, we reveal the role and underlying mechanism of PRLR-SF in pancreatic ductal adenocarcinoma (PDAC). Methods: A human PDAC tissue array was used to investigate the clinical relevance of PRLR in PDAC. The in vivo implications of PRLR-SF in PDAC were examined in a subcutaneous xenograft model and an orthotopic xenograft model. Immunohistochemistry was performed on tumor tissue obtained from genetically engineered KPC (KrasG12D/+; Trp53R172H/+; Pdx1-Cre) mice with spontaneous tumors. 13C-labeled metabolite measures, LC-MS, EdU incorporation assays and seahorse analyses were used to identify the effects of PRLR-SF on the pentose phosphate pathway and glycolysis. We identified the molecular mechanisms by immunofluorescence, coimmunoprecipitation, proximity ligation assays, chromatin immunoprecipitation and promoter luciferase activity. Public databases (TCGA, GEO and GTEx) were used to analyze the expression and survival correlations of the related genes. Results: We demonstrated that PRLR-SF is predominantly expressed in spontaneously forming pancreatic tumors of genetically engineered KPC mice and human PDAC cell lines. PRLR-SF inhibits the proliferation of PDAC cells (AsPC-1 and BxPC-3) in vitro and tumor growth in vivo. We showed that PRLR-SF reduces the expression of genes in the pentose phosphate pathway (PPP) and nucleotide biosynthesis by activating Hippo signaling. TEAD1, a downstream transcription factor of Hippo signaling, directly regulates the expression of G6PD and TKT, which are PPP rate-limiting enzymes. Moreover, NEK9 directly interacts with PRLR-SF and is the intermediator between PRLR and the Hippo pathway. The PRLR expression level is negatively correlated with overall survival and TNM stage in PDAC patients. Additionally, pregnancy and lactation increase the ratio of PRLR-SF:PRLR-LF in the pancreas of wild-type mice and subcutaneous PDAC xenograft tumors. Conclusion: Our characterization of the relationship between PRLR-SF signaling, the NEK9-Hippo pathway, PPP and nucleotide synthesis explains a mechanism for the correlation between PRLR-SF and metabolic reprogramming in PDAC progression. Strategies to alter this pathway might be developed for the treatment or prevention of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores da Prolactina/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Glucosefosfato Desidrogenase/genética , Xenoenxertos , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Nucleotídeos/biossíntese , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Via de Pentose Fosfato , Medicina de Precisão , Prognóstico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Prolactina/química , Receptores da Prolactina/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Transcetolase/genética
16.
Cell Death Dis ; 11(10): 892, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093451

RESUMO

Breast cancer is one of the most common female malignant cancers. Biorhythm disorder largely increases the risk of breast cancer. We aimed to investigate the biological functions and molecular mechanisms of circadian gene TIMELESS circadian regulator (TIM) in estrogen receptor (ER)-positive breast cancer and provide a new therapeutic target for breast cancer patients. Here, we explored that the expression of TIM was elevated in breast cancer, and high expression of TIM in cancer tissues was associated with poor prognosis, especially in the ER-positive breast cancer patients. In addition, we found that TIM promoted cell proliferation and enhanced mitochondrial respiration. TIM interacted with specificity protein 1 (Sp1) which contributes to upregulate the expression of alkaline ceramidase 2 (ACER2). Moreover, ACER2 is responsible for TIM-mediated promotive effects of cell growth and mitochondrial respiration. Collectively, our research unveiled a novel function of TIM in sphingolipid metabolism through interaction with Sp1. It provides a new theoretical explanation for the pathogenesis of breast cancer, and targeting TIM may serve as a potential therapeutic target for ER-positive breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Esfingolipídeos/metabolismo , Ceramidase Alcalina/fisiologia , Animais , Biópsia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lisofosfolipídeos/fisiologia , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Fator de Transcrição Sp1/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Chin Clin Oncol ; 8(2): 18, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31070038

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most dangerous cancers, and the overall 5-year survival rate is only 8%. The microenvironment of PDAC, which promotes tumorigenesis, disease development and metastasis, consists of fibroblasts, immune cells, pancreatic stellate cells (PaSCs), adipocytes and extracellular matrix (ECM). Because the microenvironment is a part of the tumor, it is also an important target for PDAC treatment. Several therapeutic regimens targeting PDAC microenvironment factors or cells have been investigated, but the treatment effects were poor. More research on the physiological and pathological mechanisms and clinical treatment of PDAC is necessary.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
18.
Biochem Biophys Res Commun ; 514(3): 632-638, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31076106

RESUMO

Acetyl-CoA synthetase 2 (ACSS2) generates acetyl-CoA from acetate is important for histone acetylation and gene expression. ACSS2 fulfills distinct functions depending on its cellular location in tumor cells. The role and cellular localization of ACSS2 in hepatocellular carcinoma (HCC) remains to be studied. Herein, we identified that the alternative transcription start site selection of ACSS2 was significantly different between HCC and corresponding adjacent tissues. Alternative transcription start site selection produced two different ACSS2 transcripts, ACSS2-S1 and ACSS2-S2. The two isoforms of ACSS2 had different subcellular localization and different functions. Overexpression of ACSS2-S2 promoted cell proliferation and invasion, but ACSS2-S1 did not. The ACSS2-S1 was mainly present in cytoplasm, and ACSS2-S2 was distributed in both nucleus and cytoplasm. Finally, we demonstrated that alternative transcription start site selection of ACSS2 correlates ribosome biogenesis in HCC. Our findings reveal an oncogenic role of ACSS2-S2 in HCC progression via increase of ribosome biogenesis, and suggest ACSS2-S2 might be a potential therapeutic target against the HCC.


Assuntos
Acetato-CoA Ligase/genética , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Ribossomos/metabolismo , Sítio de Iniciação de Transcrição , Acetato-CoA Ligase/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribossomos/genética
19.
Gut ; 68(11): 1994-2006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30826748

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Macrófagos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
20.
EBioMedicine ; 40: 43-55, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30639416

RESUMO

BACKGROUND: Hepatic fibrosis is caused by chronic liver injury and may progress toward liver cirrhosis, and even hepatocellular carcinoma. However, current treatment is not satisfactory. Therefore, there is a mandate to find novel therapeutic targets to improve therapy, and biomarkers to monitor therapeutic response. METHODS: Liver fibrosis was induced by carbon tetrachloride (CCl4) or thioacetamide (TAA) in wild type (WT) or CTHRC1-/- mice, followed by immunofluorescence and immunohistochemical analyses. CTHRC1 monoclonal antibody (mAb) was used to abrogate the effect of CTHRC1 in vitro and in vivo. RESULTS: Here, we reported that collagen triple helix repeat containing 1 (CTHRC1), a secreted protein derived from hepatic stellate cells (HSCs), was significantly up-regulated in fibrotic liver tissues. CTHRC1 promoted HSCs transformation from a quiescent to an activated state, and enhanced migratory or contractile capacities of HSCs by activating TGF-ß signaling. Meanwhile, CTHRC1 competitively bound to Wnt noncononical receptor and promoted the contractility but not activation of HSCs. CCl4 or TAA-induced liver fibrosis was attenuated in CTHRC-/- mice compared with littermate control, while a monoclonal antibody of CTHRC1 suppressed liver fibrosis in WT mice treated with CCl4 or TAA. INTERPRETATION: We demonstrated that CTHRC1 is a new regulator of liver fibrosis by modulating TGF-ß signaling. Targeting CTHRC1 could be a promising therapeutic approach, which can suppress TGF-ß signaling and avoid the side effects caused by directly targeting TGF-ß. CTHRC1 could also be a potential biomarker for monitoring response to anti-fibrotic therapy. FUND: This study was supported by the National Natural Science Foundation of China (ID 81672358, 81871923, 81872242, 81802890), the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (ID 20181708), the Natural Science Foundation of Shanghai (ID 17ZR1428300, 18ZR1436900), and Shanghai Municipal Health Bureau (ID 2018BR32). The funders did not play a role in manuscript design, data collection, data analysis, interpretation nor writing of the manuscript.


Assuntos
Comunicação Autócrina , Proteínas da Matriz Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Movimento Celular , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Proteínas da Matriz Extracelular/química , Humanos , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Ratos , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA