Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 20(1): 209-223, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767486

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00029/figure1/v/2024-05-14T021156Z/r/image-tiff Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory. Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1; however, whether KIF21A modulates dendritic structure and function in neurons remains unknown. In this study, we found that KIF21A was distributed in a subset of dendritic spines, and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines. Furthermore, the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity. Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching, and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1, but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1. Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals' cognitive abilities. Taken together, our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.

2.
J Biol Chem ; 300(1): 105559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097187

RESUMO

Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.


Assuntos
Segregação de Cromossomos , Cinetocoros , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Anáfase , Anticorpos Fosfo-Específicos/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitose , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/imunologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
3.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36537249

RESUMO

The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , DNA Helicases/genética , Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética
4.
Cell Rep ; 40(8): 111237, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001961

RESUMO

In eukaryotic organisms, genetic information is usually carried on multiple chromosomes. Whether and how the number and configuration of chromosomes affect organismal fitness and speciation remain unclear. Here, we have successfully established several single-chromosome fission yeast Schizosaccharomyces pombe strains, in which the three natural chromosomes have been fused into one giant chromosome in different orders. Chromosome fusions accompanied by the deletions of telomeres and centromeres result in the loss of chromosomal interactions and a drastic change of global chromosome organization, but alter gene expression marginally. The single-chromosome strains display little defects in cell morphology, mitosis, genotoxin sensitivity, and meiosis. Crosses between a wild-type strain and a single-chromosome strain or between two single-chromosome strains with different fusion orders suffer defective meiosis and poor spore viability. We conclude that eukaryotic genomes are robust against dramatic chromosomal reconfiguration, and stochastic changes in chromosome number and genome organization during evolution underlie reproductive isolation and speciation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrômero/genética , Cromossomos Fúngicos/genética , Genoma Fúngico , Meiose/genética , Mitose/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Mol Plant ; 14(10): 1714-1732, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34246801

RESUMO

Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.


Assuntos
Genes de Plantas , Hemípteros/fisiologia , Oryza/genética , Oryza/parasitologia , Folhas de Planta/parasitologia , Animais , Resistência à Doença/genética , Feminino , Oryza/imunologia , Células Vegetais/parasitologia , Células Vegetais/fisiologia
6.
J Integr Plant Biol ; 63(10): 1695-1711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302720

RESUMO

Interactions and co-evolution between plants and herbivorous insects are critically important in agriculture. Brown planthopper (BPH) is the most severe insect of rice, and the biotypes adapt to feed on different rice genotypes. Here, we present genomics analyses on 1,520 global rice germplasms for resistance to three BPH biotypes. Genome-wide association studies identified 3,502 single nucleotide polymorphisms (SNPs) and 59 loci associated with BPH resistance in rice. We cloned a previously unidentified gene Bph37 that confers resistance to BPH. The associated loci showed high nucleotide diversity. Genome-wide scans for trans-species polymorphisms revealed ancient balancing selection at the loci. The secondarily evolved insect biotypes II and III exhibited significantly higher virulence and overcame more rice varieties than the primary biotype I. In response, more SNPs and loci evolved in rice for resistance to biotypes II and III. Notably, three exceptional large regions with high SNP density and resistance-associated loci on chromosomes 4 and 6 appear distinct between the resistant and susceptible rice varieties. Surprisingly, these regions in resistant rice might have been retained from wild species Oryza nivara. Our findings expand the understanding of long-term interactions between rice and BPH and provide resistance genes and germplasm resources for breeding durable BPH-resistant rice varieties.


Assuntos
Evolução Biológica , Hemípteros , Herbivoria , Oryza/genética , Seleção Genética , Animais , Cromossomos de Plantas , Pool Gênico , Especificidade da Espécie
7.
J Exp Bot ; 72(7): 2657-2671, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33345280

RESUMO

The brown planthopper (Nilaparvata lugens Stål, BPH) resistance gene BPH9 encodes an unusual coiled-coil (CC) nucleotide-binding leucine-rich repeat (LRR) protein with two nucleotide-binding site (NBS) domains. To understand how this CC-NBS-NBS-LRR (CNNL) protein regulates defense signaling and BPH resistance, we dissected each domain's functions. The CC domain of BPH9 self-associated and was sufficient to induce cell death. The region of 97-115 residues in the CC domain is crucial for self-association and activation. NBS2, which contains a complete set of NBS function motifs and inhibits CC domain activation, rather than NBS1, acts as a molecular switch to regulate the activity of BPH9. We demonstrated that the CC domain, the NBS domain, and the LRR domain of BPH9 associate with each other and themselves in planta. Further domain swapping experiments revealed that the CC domains of BPH9 and susceptible alleles were similarly competent to induce resistance and the hypersensitive response, while the LRR domain of BPH9 confers resistance specificity to BPH. These findings provide new insights into the regulatory mechanisms governing the activity of CNNL proteins.


Assuntos
Hemípteros , Proteínas de Plantas , Plantas/genética , Animais , Sítios de Ligação , Herbivoria , Nucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos
8.
J Biol Chem ; 295(38): 13287-13298, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723864

RESUMO

The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.


Assuntos
Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA