Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685444

RESUMO

Members of the Signal Transducer and Activator of Transcription (STAT) family function pivotally as transcriptional activators integral to the modulation of inflammatory responses. The aquaculture of silver pomfret is frequently compromised by the imposition of exogenous stressors, which include thermal fluctuations, notably low-temperatures, diminished oxygen levels, and the onslaught of bacterial pathogens. Notwithstanding the critical impact of these stressors, the scientific literature presents a notable gap in our understanding of the STAT pathway's role in the silver pomfret's adaptive response mechanisms. To address this lacuna, we identified stat genes in the silver pomfret-denominated as Pastat1, Pastat2, Pastat3, Pastat4, and Pastat5-through a thorough and systematic bioinformatics analysis. Further scrutiny of the gene configurations and constituent motifs has elucidated that STAT proteins possess analogous structural frameworks and exhibit significant evolutionary preservation. Subsequently, the expression patterns of five stat genes were verified by RT-qPCR in twelve different tissues and four growth periods in healthy fish, showing that the expression of Pastat genes was temporally and spatially specific, with most of the stat genes expressed at higher levels in the spleen, following muscle, gill, and liver. Transcriptomic analysis of exposure to exogenous stressors, specifically formaldehyde and low-temperature conditions, elucidated that Pastat1 and Pastat2 genes exhibited a heightened sensitivity to these environmental challenges. RT-qPCR assays demonstrated a marked alteration in the expression profiles of jak1 and Pastat gene suites in PaS upon prolonged bacterial infection subsequent to these exogenous insults. Moreover, the gene expression of the downstream effectors involved in innate immunity and apoptosis displayed marked deviations. This study additionally elucidated the Pastat gene family's role in modulating the innate immune response and apoptotic regulation within the silver pomfret during exogenous stressors and subsequent pathogenic incursions.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Perciformes , Fatores de Transcrição STAT , Estresse Fisiológico , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Perciformes/imunologia , Perciformes/genética , Imunidade Inata/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos
2.
Front Bioeng Biotechnol ; 10: 1066799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466329

RESUMO

The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.

3.
MAbs ; 12(1): 1754999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32449439

RESUMO

This study aims to benchmark and analyze the process development and manufacturing costs across the biopharmaceutical drug development cycle and their contribution to overall research and development (R&D) costs. This was achieved with a biopharmaceutical drug development lifecycle cost model that captured the costs, durations, risks and interdependencies of the clinical, process development and manufacturing activities. The budgets needed for process development and manufacturing at each phase of development to ensure a market success each year were estimated. The impact of different clinical success rate profiles on the process development and manufacturing costs at each stage was investigated, with a particular focus on monoclonal antibodies. To ensure a market success each year with an overall clinical success rate (Phase I to approval) of ~12%, the model predicted that a biopharmaceutical company needs to allocate process development and manufacturing budgets in the order of ~$60 M for pre-clinical to Phase II material preparation and ~$70 M for Phase III to regulatory review material preparation. For lower overall clinical success rates of ~4%, which are more indicative of diseases such as Alzheimer's, these values increase to ~$190 M for early-phase and ~$140 Mfor late-phase material preparation; hence, the costs increase 2.5 fold. The costs for process development and manufacturing per market success were predicted to represent 13-17% of the R&D budget from pre-clinical trials to approval. The results of this quantitative structured cost study can be used to aid decision-making during portfolio management and budget planning procedures in biopharmaceutical development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Benchmarking/métodos , Produtos Biológicos/uso terapêutico , Aprovação de Drogas/métodos , Desenvolvimento de Medicamentos/métodos , Indústria Farmacêutica/métodos , Benchmarking/economia , Ensaios Clínicos como Assunto/economia , Aprovação de Drogas/economia , Custos de Medicamentos/estatística & dados numéricos , Desenvolvimento de Medicamentos/economia , Avaliação Pré-Clínica de Medicamentos/economia , Indústria Farmacêutica/economia , Humanos , Modelos Econômicos , Preparações Farmacêuticas/economia , Pesquisa/economia , Pesquisa/estatística & dados numéricos , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA