RESUMO
Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.
Assuntos
Microbioma Gastrointestinal , Fígado , Metionina , Camundongos Endogâmicos C57BL , Animais , Metionina/metabolismo , Metionina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , LipídeosRESUMO
Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.
Assuntos
Desulfovibrio , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Humanos , Desulfovibrio/metabolismo , Masculino , Ácidos e Sais Biliares/metabolismo , Aminoácidos/metabolismo , Dieta , Fezes/microbiologia , Fezes/química , Enxofre/metabolismo , Aminoácidos Sulfúricos/metabolismoRESUMO
Sulfate-reducing bacteria Desulfovibrio fairfieldensis is an opportunistic pathogen that widely exists in the human intestine and can cause severe infectious diseases. However, the mechanisms contributing to its pathogenesis remain of great interest. In this study, we aim to investigate the outer membrane vesicles (OMVs) secreted by D. fairfieldensis and their pathogenic effect. The OMVs separated by ultracentrifugation were spherical and displayed a characteristic bilayer lipid structure observed by transmission electron microscopy, with an average hydrodynamic diameter of 75 nm measurement using the particle size analyzer. We identified 1496 and 916 proteins from D. fairfieldensis and its OMVs using label-free non-target quantitative proteomics, respectively. The 560 co-expressed proteins could participate in bacterial life activities by function prediction. The translocation protein TolB, which participates in OMVs biogenesis and transporting toxins was highly expressed in OMVs. The OMVs inhibited the expression of tight junction proteins OCCLUDIN and ZO-1 in human colonic epithelial cells (Caco-2). The OMVs decreased the cell viability of monocyte macrophages (THP-1-Mφ) and activated various inflammatory factors secretion, including interferon-γ (IFN-γ), tumor necrosis factor (TNF-α), and many interleukins. Further, we found the OMVs induced the expression of cleaved-gasdermin D, caspase-1, and c-IL-1ß and caused pyroptosis in THP-1-Mφ cells. Taken together, these data reveal that the D. fairfieldensis OMVs can damage the intestinal epithelial barrier and activate intrinsic inflammation.