Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 74: 101748, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290673

RESUMO

OBJECTIVE: Cancer cells convert more glucose into lactate than healthy cells, what contributes to their growth advantage. Pyruvate kinase (PK) is a key rate limiting enzyme in this process, what makes it a promising potential therapeutic target. However, currently it is still unclear what consequences the inhibition of PK has on cellular processes. Here, we systematically investigate the consequences of PK depletion for gene expression, histone modifications and metabolism. METHODS: Epigenetic, transcriptional and metabolic targets were analysed in different cellular and animal models with stable knockdown or knockout of PK. RESULTS: Depleting PK activity reduces the glycolytic flux and causes accumulation of glucose-6-phosphate (G6P). Such metabolic perturbation results in stimulation of the activity of a heterodimeric pair of transcription factors MondoA and MLX but not in a major reprogramming of the global H3K9ac and H3K4me3 histone modification landscape. The MondoA:MLX heterodimer upregulates expression of thioredoxin-interacting protein (TXNIP) - a tumour suppressor with multifaceted anticancer activity. This effect of TXNIP upregulation extends beyond immortalised cancer cell lines and is applicable to multiple cellular and animal models. CONCLUSIONS: Our work shows that actions of often pro-tumorigenic PK and anti-tumorigenic TXNIP are tightly linked via a glycolytic intermediate. We suggest that PK depletion stimulates the activity of MondoA:MLX transcription factor heterodimers and subsequently, increases cellular TXNIP levels. TXNIP-mediated inhibition of thioredoxin (TXN) can reduce the ability of cells to scavenge reactive oxygen species (ROS) leading to the oxidative damage of cellular structures including DNA. These findings highlight an important regulatory axis affecting tumour suppression mechanisms and provide an attractive opportunity for combination cancer therapies targeting glycolytic activity and ROS-generating pathways.


Assuntos
Neoplasias , Piruvato Quinase , Animais , Piruvato Quinase/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
2.
Mol Metab ; 14: 39-52, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29397344

RESUMO

BACKGROUND: To maintain homeostasis, cells need to coordinate the expression of their genes. Epigenetic mechanisms controlling transcription activation and repression include DNA methylation and post-translational modifications of histones, which can affect the architecture of chromatin and/or create 'docking platforms' for multiple binding proteins. These modifications can be dynamically set and removed by various enzymes that depend on the availability of key metabolites derived from different intracellular pathways. Therefore, small metabolites generated in anabolic and catabolic processes can integrate multiple external and internal stimuli and transfer information on the energetic state of a cell to the transcriptional machinery by regulating the activity of chromatin-modifying enzymes. SCOPE OF REVIEW: This review provides an overview of the current literature and concepts on the connections and crosstalk between key cellular metabolites, enzymes responsible for their synthesis, recycling, and conversion and chromatin marks controlling gene expression. MAJOR CONCLUSIONS: Whereas current evidence indicates that many chromatin-modifying enzymes respond to alterations in the levels of their cofactors, cosubstrates, and inhibitors, the detailed molecular mechanisms and functional consequences of such processes are largely unresolved. A deeper investigation of mechanisms responsible for altering the total cellular concentration of particular metabolites, as well as their nuclear abundance and accessibility for chromatin-modifying enzymes, will be necessary to better understand the crosstalk between metabolism, chromatin marks, and gene expression.


Assuntos
Cromatina/metabolismo , Código das Histonas , Sistemas do Segundo Mensageiro , Animais , Cromatina/química , Cromatina/genética , Epigênese Genética , Humanos
3.
Nat Struct Mol Biol ; 24(12): 1048-1056, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058708

RESUMO

Histones are highly covalently modified, but the functions of many of these modifications remain unknown. In particular, it is unclear how histone marks are coupled to cellular metabolism and how this coupling affects chromatin architecture. We identified histone H3 Lys14 (H3K14) as a site of propionylation and butyrylation in vivo and carried out the first systematic characterization of histone propionylation. We found that H3K14pr and H3K14bu are deposited by histone acetyltransferases, are preferentially enriched at promoters of active genes and are recognized by acylation-state-specific reader proteins. In agreement with these findings, propionyl-CoA was able to stimulate transcription in an in vitro transcription system. Notably, genome-wide H3 acylation profiles were redefined following changes to the metabolic state, and deletion of the metabolic enzyme propionyl-CoA carboxylase altered global histone propionylation levels. We propose that histone propionylation, acetylation and butyrylation may act in combination to promote high transcriptional output and to couple cellular metabolism with chromatin structure and function.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transcrição Gênica/genética , Acetilação , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética
4.
FEBS Lett ; 590(6): 838-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26910132

RESUMO

This work focuses on the pathogenic missense mutation in YY1 protein correlated with insulinomas. Based on in vitro studies, we demonstrate that the mutation does not affect the secondary structure of either zinc fingers or the N-terminal fragment (NTF) of the protein. Apart from a slight increase in the protein's compactness, no changes in the tertiary structure were observed. The introduced mutation significantly alters DNA-binding properties, both the affinity and enthalpy-entropy contribution of the process, which are highly dependent on the recognized sequence. Obtained results indicate concerted rather than a modular mode of sequence recognition by YY1 with the significant impact of a disordered NTF.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/genética , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética , Substituição de Aminoácidos , Sítios de Ligação/genética , Dicroísmo Circular , DNA/química , DNA/genética , DNA/metabolismo , Polarização de Fluorescência , Humanos , Insulinoma/genética , Insulinoma/metabolismo , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Fator de Transcrição YY1/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA