Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37949841

RESUMO

Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.


Assuntos
Proteínas de Drosophila , Nucleossomos , Animais , Nucleossomos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Fatores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos
3.
Development ; 147(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32094114

RESUMO

How temporal cues combine with spatial inputs to control gene expression during development is poorly understood. Here, we test the hypothesis that the Drosophila transcription factor E93 controls temporal gene expression by regulating chromatin accessibility. Precocious expression of E93 early in wing development reveals that it can simultaneously activate and deactivate different target enhancers. Notably, the precocious patterns of enhancer activity resemble the wild-type patterns that occur later in development, suggesting that expression of E93 alters the competence of enhancers to respond to spatial cues. Genomic profiling reveals that precocious E93 expression is sufficient to regulate chromatin accessibility at a subset of its targets. These accessibility changes mimic those that normally occur later in development, indicating that precocious E93 accelerates the wild-type developmental program. Further, we find that target enhancers that do not respond to precocious E93 in early wings become responsive after a developmental transition, suggesting that parallel temporal pathways work alongside E93. These findings support a model wherein E93 expression functions as an instructive cue that defines a broad window of developmental time through control of chromatin accessibility.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/química , Montagem e Desmontagem da Cromatina/fisiologia , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/genética , Ligação Proteica , Fatores de Transcrição/genética , Asas de Animais/embriologia , Asas de Animais/metabolismo
4.
mSystems ; 4(4)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186335

RESUMO

Engineering synthetic circuits into intestinal bacteria to sense, record, and respond to in vivo signals is a promising new approach for the diagnosis, treatment, and prevention of disease. However, because the design of disease-responsive circuits is limited by a relatively small pool of known biosensors, there is a need for expanding the capacity of engineered bacteria to sense and respond to the host environment. Here, we apply a robust genetic memory circuit in Escherichia coli to identify new bacterial biosensor triggers responding in the healthy and diseased mammalian gut, which may be used to construct diagnostic or therapeutic circuits. We developed a pipeline for rapid systems-level library construction and screening, using next-generation sequencing and computational analysis, which demonstrates remarkably reliable identification of responsive biosensor triggers from pooled libraries. By testing libraries of potential triggers-each consisting of a promoter and ribosome binding site (RBS)-and using RBS variation to augment the range of trigger sensitivity, we identify and validate triggers that selectively activate our synthetic memory circuit during transit through the gut. We further identify biosensor triggers with increased response in the inflamed gut through comparative screening of one of our libraries in healthy mice and those with intestinal inflammation. Our results demonstrate the power of systems-level screening for the identification of novel biosensor triggers in the gut and provide a platform for disease-specific screening that is capable of contributing to both the understanding and clinical management of intestinal illness.IMPORTANCE The gut is a largely obscure and inaccessible environment. The use of live, engineered probiotics to detect and respond to disease signals in vivo represents a new frontier in the management of gut diseases. Engineered probiotics have also shown promise as a novel mechanism for drug delivery. However, the design and construction of effective strains that respond to the in vivo environment is hindered by our limited understanding of bacterial behavior in the gut. Our work expands the pool of environmentally responsive synthetic circuits for the healthy and diseased gut, providing insight into host-microbe interactions and enabling future development of increasingly complex biosensors. This method also provides a framework for rapid prototyping of engineered systems and for application across bacterial strains and disease models, representing a practical step toward the construction of clinically useful synthetic tools.

5.
Mol Biol Cell ; 28(20): 2734-2745, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963440

RESUMO

Carbon fixation in cyanobacteria makes a major contribution to the global carbon cycle. The cyanobacterial carboxysome is a proteinaceous microcompartment that protects and concentrates the carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in a paracrystalline lattice, making it possible for these organisms to fix CO2 from the atmosphere. The protein responsible for the organization of this lattice in beta-type carboxysomes of the freshwater cyanobacterium Synechococcus elongatus, CcmM, occurs in two isoforms thought to localize differentially within the carboxysome matrix. Here we use wide-field time-lapse and three-dimensional structured illumination microscopy (3D-SIM) to study the recruitment and localization of these two isoforms. We demonstrate that this superresolution technique is capable of distinguishing the localizations of the outer protein shell of the carboxysome and its internal cargo. We develop an automated analysis pipeline to analyze and quantify 3D-SIM images and generate a population-level description of the carboxysome shell protein, RuBisCO, and CcmM isoform localization. We find that both CcmM isoforms have similar spatial and temporal localization, prompting a revised model of the internal arrangement of the ß-carboxysome.


Assuntos
Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Microscopia/métodos , Organelas/metabolismo , Isoformas de Proteínas , Transporte Proteico , Synechococcus/enzimologia , Synechococcus/metabolismo
6.
Genes Dev ; 31(9): 862-875, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536147

RESUMO

Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility.


Assuntos
Cromatina/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/metabolismo , Animais , Cromatina/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Pupa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
7.
Nat Biotechnol ; 35(7): 653-658, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553941

RESUMO

Bacteria can be engineered to function as diagnostics or therapeutics in the mammalian gut but commercial translation of technologies to accomplish this has been hindered by the susceptibility of synthetic genetic circuits to mutation and unpredictable function during extended gut colonization. Here, we report stable, engineered bacterial strains that maintain their function for 6 months in the mouse gut. We engineered a commensal murine Escherichia coli strain to detect tetrathionate, which is produced during inflammation. Using our engineered diagnostic strain, which retains memory of exposure in the gut for analysis by fecal testing, we detected tetrathionate in both infection-induced and genetic mouse models of inflammation over 6 months. The synthetic genetic circuits in the engineered strain were genetically stable and functioned as intended over time. The durable performance of these strains confirms the potential of engineered bacteria as living diagnostics.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Gastroenterite/diagnóstico , Gastroenterite/microbiologia , Microbioma Gastrointestinal , Ácido Tetratiônico/metabolismo , Animais , Sobrevivência Celular , Escherichia coli/isolamento & purificação , Feminino , Engenharia Genética/métodos , Intestinos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA