Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(3): 106150, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36890792

RESUMO

Glucose transporters are gatekeepers of cellular glucose metabolism. Understanding how their activity is regulated can provide insight into mechanisms of glucose homeostasis and diseases arising from dysregulation of glucose transport. Glucose stimulates endocytosis of the human glucose transporter GLUT1, but several important questions remain surrounding the intracellular trafficking itinerary of GLUT1. Here, we report that increased glucose availability triggers lysosomal trafficking of GLUT1 in HeLa cells, with a subpopulation of GLUT1 routed through ESCRT-associated late endosomes. This itinerary requires the arrestin-like protein TXNIP, which interacts with both clathrin and E3 ubiquitin ligases to promote GLUT1 lysosomal trafficking. We also find that glucose stimulates GLUT1 ubiquitylation, which promotes its lysosomal trafficking. Our results suggest that excess glucose first triggers TXNIP-mediated endocytosis of GLUT1 and, subsequently, ubiquitylation to promote lysosomal trafficking. Our findings underscore how complex coordination of multiple regulators is required for fine-tuning of GLUT1 stability at the cell surface.

2.
Trends Biochem Sci ; 45(5): 427-439, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311336

RESUMO

In eukaryotic cells, proteome remodeling is mediated by the ubiquitin-proteasome system, which regulates protein degradation, trafficking, and signaling events in the cell. Interplay between the cellular proteome and ubiquitin is complex and dynamic and many regulatory features that support this system have only recently come into focus. An unexpected recurring feature in this system is the physical interaction between E3 ubiquitin ligases and deubiquitylases (DUBs). Recent studies have reported on the regulatory significance of DUB-E3 interactions and it is becoming clear that they play important but complicated roles in the regulation of diverse cellular processes. Here, we summarize the current understanding of interactions between ubiquitin conjugation and deconjugation machineries and we examine the regulatory logic of these enigmatic complexes.


Assuntos
Ubiquitina/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Rep ; 28(4): 1074-1089.e5, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340145

RESUMO

The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer.


Assuntos
Proteínas Desgrenhadas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA