Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7560-7570, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610098

RESUMO

[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Elementos da Série dos Lantanídeos/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Estereoisomerismo , Estrutura Molecular , Compostos Heterocíclicos com 1 Anel/química , Amidas/química , Meios de Contraste/química , Meios de Contraste/farmacologia
2.
Methods Appl Fluoresc ; 11(1)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36696692

RESUMO

The photophysics of a europium(III) complex of 1,4,7,10-tetraazacycododecane-1,4,7-triacetic acid-10-(2-methylene)-1-azathioxanthone was investigated in three buffer systems and at three pH values. The buffers-phosphate buffered saline (PBS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and universal buffer (UB)-had no effect on the europium luminescence, but a lower overall emission intensity was determined in HEPES. It was found that this was due to quenching of the 1-azathioxanthone first excited singlet state by HEPES. The effect of pH on the photophysics of the complex was found to be minimal, and protonation of the pyridine nitrogen was found to be irrelevant. Even so, pH was shown to change the intensity ratio between 1-azathioxanthone fluorescence and europium luminescence. It was concluded that the full photophysics of a potential molecular probe should be investigated to achieve the best possible results in any application.

3.
J Phys Chem A ; 125(38): 8347-8357, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546039

RESUMO

The trivalent lanthanide ions show optical transitions between energy levels within the 4f shell. All these transitions are formally forbidden according to the quantum mechanical selection rules used in molecular photophysics. Nevertheless, highly luminescent complexes can be achieved, and terbium(III) and europium(III) ions are particularly efficient emitters. This report started when an apparent lack of data in the literature led us to revisit the fundamental photophysics of europium(III). The photophysical properties of two complexes-[Eu·DOTA(MeOH-d4)]- and [Eu(MeOH-d4)9]3+-were investigated in deuterated methanol at five different temperatures. Absorption spectra showed decreased absorbance as the temperature was increased. Luminescence spectra and time-resolved emission decay profiles showed a decrease in intensity and lifetime as the temperature was increased. Having corrected the emission spectra for the actual number of absorbed photons and differences in the non-radiative pathways, the relative emission probability was revealed. These were found to increase with increasing temperature. The transition probability for luminescence was shown to increase with temperature, while the transition probability for light absorption decreased. The changes in transition probabilities were correlated with a change in the symmetry of the absorber or emitter, with an average increase in symmetry lowering absorbance and access to more asymmetric structures increasing the emission rate constant. Determining luminescence quantum yields and the Einstein coefficient for spontaneous emission allowed us to conclude that lowering symmetry increases both. Furthermore, it was found that collisional self-quenching is an issue for lanthanide luminescence, when high concentrations are used. Finally, detailed analysis revealed results that show the so-called "Werts' method" for calculating radiative lifetimes and intrinsic quantum yields is based on assumptions that do not hold for the two systems investigated here. We conclude that we are lacking a good theoretical description of the intraconfigurational f-f transitions, and that there are still aspects of fundamental lanthanide photophysics to be explored.

4.
Inorg Chem ; 59(1): 94-105, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31687812

RESUMO

The physicochemical properties of lanthanide(III) ions are directly linked to the structure of the surrounding ligands. Rapid ligand exchange prohibits direct structure-property relationships from being formed for simple complexes in solution because the property measured will be an average over several structures. For kinetically inert lanthanide(III) complexes, the simpler speciation may alleviate the problem, yet the archetypical complexes formed by ligands derived from cyclen are known to have at least four different forms in solution-each with a variation in the crystal field that gives rise to significantly different properties. Slow interchange between forms has been engineered, so that a single complex geometry can be studied, but fast or intermediate interchange between forms is much more commonly observed. The rapid structural fluctuation can report on the changing chemical environment and can be disregarded if a specific property of a lanthanide(III) complex is exploited in an application. However, if we are to understand the chemistry of the lanthanide(III) ions in solution, we must include the structural fluctuation that takes place even in kinetically inert lanthanide(III) complexes in our studies. Here, we have scrutinized the processes that determine the speciation of lanthanide(III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA)-like ligands, in particular the processes that enable exchange between forms that have different physicochemical properties, exemplified by the exchange between the diastereomeric capped square-antiprismatic (cSAP) and capped twisted-square-antiprismatic (cTSAP) forms of DOTA-like lanthanide(III) complexes. In the characterization of a kinetically inert f-element complex, understanding the structural fluctuation in the system is critical because a single observed property can arise from a weighted average, from all forms present, or from a single form with a dominating contribution. Further, the experimental condition will influence both the distribution of lanthanide(III) species in solution and the rates of the processes that change the coordination sphere of the lanthanide(III) ions. This is highlighted using data from a series of cyclen-derived ligands with different pendant arms and different denticity. The data were obtained in experiments that take place on different time scales to show that the rate of the process that results in a structural change must be considered against the time of the experiment. We conclude that the structural fluctuations must be taken into account and that they cannot be predicted from the ligand structure. Thus, an estimate of the exchange rates between forms, the relative concentrations of the specific forms, and the effect of the specific structure of each form of the complex must be included in the description of the solution properties of f-element chelates.

5.
Dalton Trans ; 47(31): 10360-10376, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29799030

RESUMO

It has been more than 15 years since the last authoritative report on the solution structure of lanthanide complexes made from cylcen derived polydentate ligands. The field has progressed and diversified, and tools have been developed that should enable a step-change in the field in the imminent future. This will only happen if the tools are used, and the results communicated in a form that is consistent within the field and readily accesible to scientists outside the field. In this perspective, the fundamental tools for designing and investigating kinetically inert lanthanide complexes in solution will be covered. The fundamentals of this type of complexes will be laid out. The conformations of lanthanide complexes from cyclen derived ligands and the rate of exchange between conformations will be linked to their 1H NMR and luminescence spectra. The information rich ligand- and metal centred emission spectra will be discussed, and the time-resolved luminescence decay lifetimes are shown to be directly related to the solution structure. The aim is to provide the reader with the information needed to become excited by lanthanide coordination chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA