Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Orphanet J Rare Dis ; 18(1): 72, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024986

RESUMO

BACKGROUND: Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS: To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS: CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS: Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.


Assuntos
Células-Tronco Pluripotentes Induzidas , Paraplegia Espástica Hereditária , Xantomatose Cerebrotendinosa , Humanos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Ácido Quenodesoxicólico/metabolismo , Xantomatose Cerebrotendinosa/genética , Neurônios/metabolismo , Neurônios/patologia , Paraplegia Espástica Hereditária/metabolismo , Ácidos e Sais Biliares , Paraplegia/metabolismo
2.
Parkinsonism Relat Disord ; 99: 23-29, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580426

RESUMO

OBJECTIVE: Huntington's disease (HD) is an inherited neurodegenerative disease with motor, cognitive and psychiatric symptoms. Non-motor symptoms like depression and altered social cognition are proposed to be caused by dysfunction of the hypothalamus. We measured the hypothalamic neuropeptide oxytocin in plasma and cerebrospinal fluid (CSF) in a cohort of HD gene expansion carriers (HDGECs), compared the levels to healthy HD family controls and correlated oxytocin levels to disease progression and social cognition. METHODS: We recruited 113 HDGECs and 33 controls. Psychiatric and cognitive symptoms were evaluated, and social cognition was assessed with the Emotion Hexagon test, Reading the Mind in the Eyes and The Awareness of Social Inference Test. The levels of oxytocin in CSF and blood were analyzed by radioimmunoassay. RESULTS: We found the level of oxytocin in CSF to be significantly lower by 33.5% in HDGECs compared to controls (p = 0.016). When dividing the HDGECs into groups with or without cognitive impairment, we found the oxytocin level to be significantly lower by 30.3% in the HDGECs with cognitive symptoms (p = 0.046). We found a statistically significant correlation between the level of oxytocin and scores on social cognition (Reading the Mind in the Eyes p = 0.0019; Emotion Hexagon test: p = 0.0062; The Awareness of Social Inference Test: p = 0.002). CONCLUSIONS: This is the first study to measure oxytocin in the CSF of HDGECs. We find that HDGECs have a significantly lower level of oxytocin compared to controls, and that the level of oxytocin may represent an objective and comparable measure that could be used as a state biomarker for impairment of social cognition. We suggest treatment trials to evaluate a potential effect of oxytocin on social cognition in HD.


Assuntos
Disfunção Cognitiva , Doença de Huntington , Ocitocina , Disfunção Cognitiva/etiologia , Emoções , Humanos , Doença de Huntington/complicações , Ocitocina/líquido cefalorraquidiano
3.
Acta Neurol Scand ; 145(5): 529-540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34997757

RESUMO

OBJECTIVES: Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD). This retrospective cohort study utilizes demographics to identify risk factors for onset, progression, life expectancy, and death in CHMP2B-mediated FTD. The pedigree of 528 individuals in six generations is provided, and clinical descriptions are presented. Choices of genetic testing are evaluated. MATERIALS AND METHODS: Demographic and lifestyle factors were assessed in survival analysis in all identified CHMP2B mutation carriers (44 clinically affected FTD-3 patients and 16 presymptomatic CHMP2B mutation carriers). Predictors of onset and progression included sex, parental disease course, education, and vascular risk factors. Life expectancy was established by matching CHMP2B mutation carriers with average life expectancies in Denmark. RESULTS: Disease course was not correlated to parental disease course and seemed unmodified by lifestyle factors. Diagnosis was recognized at an earlier age in members with higher levels of education, probably reflecting an early dysexecutive syndrome, unmasked earlier in people with higher work-related requirements. Carriers of the CHMP2B mutation had a significant reduction in life expectancy of 13 years. Predictive genetic testing was chosen by 20% of at-risk family members. CONCLUSIONS: CHMP2B-mediated FTD is substantiated as an autosomal dominantly inherited disease of complete penetrance. The clinical phenotype is a behavioral variant FTD. The disease course is unpredictable, and life expectancy is reduced. The findings may be applicable to other genetic FTD subtypes.


Assuntos
Demência Frontotemporal , Estudos de Coortes , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Estudos Retrospectivos
4.
Orphanet J Rare Dis ; 16(1): 340, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344392

RESUMO

BACKGROUND: Huntington's disease (HD) is clinically characterized by progressing motor, cognitive and psychiatric symptoms presenting as varying phenotypes within these three major symptom domains. The disease is caused by an expanded CAG repeat tract in the huntingtin gene and the pathomechanism leading to these endophenotypes is assumed to be neurodegenerative. In 2012/2013 we recruited 107 HD gene expansion carriers (HDGECs) and examined the frequency of the three cardinal symptoms and in 2017/2018 we followed up 74 HDGECs from the same cohort to describe the symptom trajectories and individual drift between the endophenotypes as well as potential predictors of progression and remission. RESULTS: We found higher age to reduce the probability of improving on psychiatric symptoms; increasing disease burden score ((CAG-35.5) * age) to increase the risk of developing cognitive impairment; increasing disease burden score and shorter education to increase the risk of motor onset while lower disease burden score and higher Mini Mental State Examination increased the probability of remaining asymptomatic. We found 23.5% (N = 8) to improve from their psychiatric symptoms. CONCLUSIONS: There is no clear pattern in the development of or drift between endophenotypes. In contrast to motor and cognitive symptoms we find that psychiatric symptoms may resolve and thereby not entirely be caused by neurodegeneration. The probability of improving from psychiatric symptoms is higher in younger age and advocates for a potential importance of early treatment.


Assuntos
Doença de Huntington , Seguimentos , Humanos , Doença de Huntington/genética
5.
Mov Disord ; 35(12): 2343-2347, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949189

RESUMO

BACKGROUND: In a Danish family, multiple individuals in five generations present with early-onset paroxysmal cranial dyskinesia, musculoskeletal abnormalities, and kidney dysfunction. OBJECTIVE: To demonstrate linkage and to identify the underlying genetic cause of disease. METHODS: Genome-wide single-nucleotide polymorphisms analysis, Sequence-Tagged-Site marker analyses, exome sequencing, and Sanger sequencing were performed. RESULTS: Linkage analyses identified a candidate locus on chromosome 9. Exome sequencing revealed a novel variant in LMX1B present in all affected individuals, logarithm of the odds (LOD) score of z = 6.54, predicted to be damaging. Nail-patella syndrome (NPS) is caused by pathogenic variants in LMX1B encoding a transcription factor essential to cytoskeletal and kidney growth and dopaminergic and serotonergic network development. NPS is characterized by abnormal musculoskeletal features and kidney dysfunction. Movement disorders have not previously been associated with NPS. CONCLUSIONS: Paroxysmal dyskinesia is a heretofore unrecognized feature of the NPS spectrum. The pathogenic mechanism might relate to aberrant dopaminergic circuits. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Coreia , Síndrome da Unha-Patela , Humanos , Proteínas com Homeodomínio LIM/genética , Síndrome da Unha-Patela/genética , Crânio , Fatores de Transcrição/genética
6.
Mol Brain ; 13(1): 125, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928252

RESUMO

Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by 13C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, 13C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.


Assuntos
Astrócitos/metabolismo , Demência Frontotemporal/patologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neurônios/metabolismo , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico/genética , Metabolismo Energético/genética , Demência Frontotemporal/genética , Regulação da Expressão Gênica , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Proteômica
7.
Ann Neurol ; 87(2): 246-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31725947

RESUMO

OBJECTIVE: Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. No disease-modifying therapy exists for the treatment of patients with HD. The purpose of this study was therefore to investigate early disease mechanisms that potentially could be used as a target therapeutically. METHODS: Lymphocyte activity in cerebrospinal fluid (CSF) from 4 cohorts of HTT gene expansion carriers (n = 121 in total) and controls was analyzed by techniques based on flow cytometry and enzyme-linked immunosorbent assays. RESULTS: The data of this study provide evidence of immune abnormalities before motor onset of disease. In CSF of HTT gene expansion carriers, we found increased levels of proinflammatory cytokines, including IL-17, and increased consumption of the lymphocyte growth factor IL-7 before motor onset of HD. In concordance, we observed an increased prevalence of IL-17-producing Th17.1 cells in the CSF of HTT gene expansion carriers, predominantly in pre-motor manifest individuals. The frequency of intrathecal Th17.1 cells correlated negatively with progression of HD and the level of neurodegeneration, suggesting a role of Th17.1 cells in the early disease stage. We also observed a skewing in the balance between proinflammatory and regulatory T cells potentially favoring a proinflammatory intrathecal environment in HTT gene expansion carriers. INTERPRETATION: These data suggest that Th17.1 cells are implicated in the earliest pathogenic phases of HD and suggest that treatment to dampen T -cell-driven inflammation before motor onset might be of benefit in HTT gene expansion carriers. ANN NEUROL 2020;87:246-255.


Assuntos
Doença de Huntington/imunologia , Doença de Huntington/fisiopatologia , Ativação Linfocitária/imunologia , Células Th17/imunologia , Adulto , Idoso , Proliferação de Células , Citocinas/líquido cefalorraquidiano , Citocinas/metabolismo , Feminino , Heterozigoto , Humanos , Proteína Huntingtina/genética , Doença de Huntington/líquido cefalorraquidiano , Doença de Huntington/genética , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Células Th17/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
8.
J Neural Transm (Vienna) ; 126(11): 1493-1500, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501979

RESUMO

In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt-related effects on neuronal placticity.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Hipocampo/efeitos dos fármacos , Proteína Huntingtina/metabolismo , Moléculas de Adesão de Célula Nervosa/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oligopeptídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Moléculas de Adesão de Célula Nervosa/agonistas , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Proteínas Recombinantes
9.
Neurobiol Aging ; 59: 221.e1-221.e7, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888721

RESUMO

Single-nucleotide polymorphisms in the TMEM106B gene have been identified as a risk factor in frontotemporal dementia (FTD). The major allele of SNP rs3173615 is a risk factor in sporadic FTD, whereas the minor allele seems protective in GRN- and C9orf72-mediated FTD. The role of apolipoprotein E (ApoE) in FTD is uncertain, though an established risk factor in Alzheimer's disease. In a unique Danish family, inherited FTD is caused by a mutation in the CHMP2B gene located on chromosome 3 (FTD-3). In this family, both risk factors TMEM106B and ApoE were analyzed and correlated to age at onset (AAO) and progression in terms of age at institutionalization (AAI) and age at death (AAD). Although TMEM106B and CHMP2B share cellular function in that both localize to endolysosomes, TMEM106B genotypes appeared to have no influence on the clinical disease course. ApoE ε4 was found to be a protective factor with later AAO and AAI, whereas ε2 seemed to aggravate the disease with earlier AAO and AAD. These results indicate ApoE ε2 as a risk factor in FTD-3 and suggest a protective role of ε4.


Assuntos
Apolipoproteína E2/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
N Biotechnol ; 39(Pt B): 190-198, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28579476

RESUMO

The rising prevalence of progressive neurodegenerative diseases coupled with increasing longevity poses an economic burden at individual and societal levels. There is currently no effective cure for the majority of neurodegenerative diseases and disease-affected tissues from patients have been difficult to obtain for research and drug discovery in pre-clinical settings. While the use of animal models has contributed invaluable mechanistic insights and potential therapeutic targets, the translational value of animal models could be further enhanced when combined with in vitro models derived from patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide the opportunity to model disease development, uncover novel mechanisms and test potential therapeutics. Here we review findings from iPSC-based modeling of selected neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and spinocerebellar ataxia. Furthermore, we discuss the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Técnicas de Cultura de Células , Humanos , Neurônios/patologia
11.
Cell Cycle ; 16(11): 1070-1084, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28426281

RESUMO

Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig.


Assuntos
Reprogramação Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Animais , Biomarcadores/metabolismo , Cruzamento , Diferenciação Celular , Membrana Celular/metabolismo , Células Cultivadas , Endoglina/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Sus scrofa
12.
Mitochondrion ; 34: 103-114, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263872

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.


Assuntos
Fibroblastos/patologia , Mitocôndrias/patologia , Estresse Oxidativo , Ataxias Espinocerebelares/patologia , Ubiquinona/análogos & derivados , Vitaminas/metabolismo , Adolescente , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ubiquinona/metabolismo , Adulto Jovem
13.
Stem Cell Reports ; 8(3): 648-658, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216144

RESUMO

The truncated mutant form of the charged multivesicular body protein 2B (CHMP2B) is causative for frontotemporal dementia linked to chromosome 3 (FTD3). CHMP2B is a constituent of the endosomal sorting complex required for transport (ESCRT) and, when mutated, disrupts endosome-to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs) were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3 neurons displayed defective cristae formation, accompanied by deficiencies in mitochondrial respiration and increased levels of reactive oxygen. In addition, we provide evidence for perturbed iron homeostasis, presenting an in vitro patient-specific model to study the effects of iron accumulation in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo , Diferenciação Celular , Reprogramação Celular , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Estresse Oxidativo/genética , Transcriptoma
14.
Mol Reprod Dev ; 84(3): 229-245, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28044390

RESUMO

Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed more light on the underlying biological mechanisms of porcine pluripotency. LIF-derived piPSCs were more successful than their FGF-derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop, only their prescence within the embryonic membranes could be detected. Whole-transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming. Indeed, bioinformatic analysis of the pluripotency-related gene network of the LIF- versus FGF-derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC-like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression of ATOH1 in piPSC-like cells, which was absent in the inner cell mass. Moreover, our gene expression analyses plus correlation analyses of known pluripotency genes identified unique relationships between pluripotency genes in the inner cell mass, which are to some extent, in the piPSC-like cells. This deficiency in downstream gene activation and divergent gene expression may be underlie the inability to derive germ line-transmitting piPSCs, and provides unique insight into which genes are necessary to achieve fully reprogrammed piPSCs. 84: 229-245, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator Inibidor de Leucemia/farmacologia , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Suínos
15.
Stem Cell Res ; 17(3): 576-579, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27934586

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a 59-year-old female FTD-17 patient carrying an R406W mutation in the MAPT-gene.


Assuntos
Demência Frontotemporal/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas tau/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Feminino , Fibroblastos/citologia , Demência Frontotemporal/genética , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Mesoderma/citologia , Mesoderma/metabolismo , Pessoa de Meia-Idade , Plasmídeos/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Stem Cell Res ; 17(3): 600-602, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27934590

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a pre-symptomatic carrier of the R406W mutation in the MAPT-gene.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Proteínas tau/genética , Adulto , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Feminino , Fibroblastos/citologia , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Mesoderma/citologia , Mesoderma/metabolismo , Microscopia de Fluorescência , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Pele/citologia
17.
Stem Cell Res ; 17(2): 285-288, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27879212

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease causing neural cell degeneration and brain atrophy and is considered to be the most common form of dementia. We previously generated an induced pluripotent stem cell (iPSC) line from an AD patient carrying an A79V mutation in PSEN1 as an in vitro disease model. Here we generated a gene-corrected version from this hiPSC line by substituting the point mutation with the wild-type sequence. The reported A79V-GC-iPSCs line is a very useful resource in combination with the A79V-iPSC line in order to study pathological cellular phenotypes related to this particular mutation.


Assuntos
Doença de Alzheimer/patologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Presenilina-1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Células Cultivadas , Análise Mutacional de DNA , Feminino , Fibroblastos/citologia , Genótipo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Stem Cell Res ; 17(3): 466-469, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789395

RESUMO

Mutations in the presenilin 1 (PSEN1) gene lead to the most aggressive form of familial Alzheimer's disease (AD). Human induced pluripotent stem cells (hiPSCs) derived from AD patients and subsequently differentiated can be used for disease modeling. We have previously generated a hiPSC line from a familial AD patient carrying a L150P point mutation in PSEN1. Here we used CRISPR/Cas9 gene editing to correct for the single base pair mutation. This gene-corrected line, L150P-GC-hiPSC, serves as an isogenic control to the mutant line for future investigation of mechanisms and cellular phenotypes altered by this specific PSEN1 mutation.


Assuntos
Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Presenilina-1/genética , Doença de Alzheimer/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Fibroblastos/citologia , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Masculino , Microscopia de Fluorescência , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Stem Cell Res ; 17(3): 470-473, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789396

RESUMO

Mutations in presenilin 1 (PSEN1) lead to the most aggressive form of familial Alzheimer's disease (AD). Human induced pluripotent stem cells (hiPSCs) derived from AD patients can be differentiated and used for disease modeling. Here, we derived hiPSC from skin fibroblasts obtained from an AD patient carrying a L282F mutation in PSEN1. We transfected skin fibroblasts with episomal iPSC reprogramming vectors targeting human OCT4, SOX2, L-MYC, KLF4, NANOG, LIN28, and short hairpin RNA against TP53. Our hiPSC line, L282F-hiPSC, displayed typical stem cell characteristics with consistent expression of pluripotency genes and the ability to differentiation into the three germ layers.


Assuntos
Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Presenilina-1/genética , Doença de Alzheimer/genética , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Fator 4 Semelhante a Kruppel , Masculino , Microscopia de Fluorescência , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Análise de Sequência de DNA , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Stem Cell Res ; 17(3): 556-559, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789409

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau)-gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a 57-year-old female FTD-17 patient carrying an P301L mutation in the MAPT-gene.


Assuntos
Demência/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas tau/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos Par 17 , Demência/genética , Feminino , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Mesoderma/citologia , Mesoderma/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA