Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 10(3): 826-839, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608722

RESUMO

Humans experience higher rates of age-associated diseases than our closest living evolutionary relatives, chimpanzees. Environmental factors can explain many of these increases in disease risk, but species-specific genetic changes can also play a role. Alleles that confer increased disease susceptibility later in life can persist in a population in the absence of selective pressure if those changes confer positive adaptation early in life. One age-associated disease that disproportionately affects humans compared with chimpanzees is epithelial cancer. Here, we explored genetic differences between humans and chimpanzees in a well-defined experimental assay that mimics gene expression changes that happen during cancer progression: A fibroblast serum challenge. We used this assay with fibroblasts isolated from humans and chimpanzees to explore species-specific differences in gene expression and chromatin state with RNA-Seq and DNase-Seq. Our data reveal that human fibroblasts increase expression of genes associated with wound healing and cancer pathways; in contrast, chimpanzee gene expression changes are not concentrated around particular functional categories. Chromatin accessibility dramatically increases in human fibroblasts, yet decreases in chimpanzee cells during the serum response. Many regions of opening and closing chromatin are in close proximity to genes encoding transcription factors or genes involved in wound healing processes, further supporting the link between changes in activity of regulatory elements and changes in gene expression. Together, these expression and open chromatin data show that humans and chimpanzees have dramatically different responses to the same physiological stressor, and how a core physiological process can evolve quickly over relatively short evolutionary time scales.


Assuntos
Cromatina/genética , Evolução Molecular , Variação Genética/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Pan troglodytes/sangue , Pan troglodytes/genética , Regiões Promotoras Genéticas , Especificidade da Espécie , Fatores de Transcrição/genética
2.
Mol Phylogenet Evol ; 115: 161-170, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757447

RESUMO

Multi-locus phylogenetic studies of echinoderms based on Sanger and RNA-seq technologies and the fossil record have provided evidence for the Asterozoa-Echinozoa hypothesis. This hypothesis posits a sister relationship between asterozoan classes (Asteroidea and Ophiuroidea) and a similar relationship between echinozoan classes (Echinoidea and Holothuroidea). Despite this consensus around Asterozoa-Echinozoa, phylogenetic relationships within the class Asteroidea (sea stars or starfish) have been controversial for over a century. Open questions include relationships within asteroids and the status of the enigmatic taxon Xyloplax. Xyloplax is thought by some to represent a newly discovered sixth class of echinoderms - and by others to be an asteroid. To address these questions, we applied a novel workflow to a large RNA-seq dataset that encompassed a broad taxonomic and genomic sample. This study included 15 species sampled from all extant orders and 13 families, plus four ophiuroid species as an outgroup. To expand the taxonomic coverage, the study also incorporated five previously published transcriptomes and one previously published expressed sequence tags (EST) dataset. We developed and applied methods that used a range of alignment parameters with increasing permissiveness in terms of gap characters present within an alignment. This procedure facilitated the selection of phylogenomic data subsets from large amounts of transcriptome data. The results included 19 nested data subsets that ranged from 37 to 4,281loci. Tree searches on all data subsets reconstructed Xyloplax as a velatid asteroid rather than a new class. This result implies that asteroid morphology remains labile well beyond the establishment of the body plan of the group. In the phylogenetic tree with the highest average asteroid nodal support several monophyletic groups were recovered. In this tree, Forcipulatida and Velatida are monophyletic and form a clade that includes Brisingida as sister to Forcipulatida. Xyloplax is consistently recovered as sister to Pteraster. Paxillosida and Spinulosida are each monophyletic, with Notomyotida as sister to the Paxillosida. Valvatida is recovered as paraphyletic. The results from other data subsets are largely consistent with these results. Our results support the hypothesis that the earliest divergence event among extant asteroids separated Velatida and Forcipulatacea from Valvatacea and Spinulosida.


Assuntos
Estrelas-do-Mar/classificação , Transcriptoma , Animais , Etiquetas de Sequências Expressas , Filogenia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Estrelas-do-Mar/genética
3.
BMC Genomics ; 18(1): 435, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583075

RESUMO

BACKGROUND: Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. RESULTS: Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. CONCLUSIONS: Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Genoma Humano/genética , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Ontologia Genética , Variação Genética , Genômica , Humanos , Especificidade de Órgãos , Pan troglodytes/genética , RNA Mensageiro/genética
4.
J Hum Evol ; 73: 75-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810709

RESUMO

Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5' flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5' flank and 3' flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5' flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5' flank and 3' flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids.


Assuntos
Esmalte Dentário/anatomia & histologia , Hominidae/anatomia & histologia , Hylobatidae/anatomia & histologia , Macaca mulatta/anatomia & histologia , Seleção Genética , Animais , Sequência de Bases , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hominidae/genética , Hominidae/metabolismo , Humanos , Hylobatidae/genética , Hylobatidae/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 20 da Matriz/metabolismo , Filogenia , Alinhamento de Sequência
5.
PLoS Biol ; 11(10): e1001696, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204211

RESUMO

Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Strongylocentrotus purpuratus/genética , Animais , Osso e Ossos/anatomia & histologia , Perfilação da Expressão Gênica , Larva/anatomia & histologia , Larva/genética , Strongylocentrotus purpuratus/crescimento & desenvolvimento
6.
Evol Dev ; 14(2): 152-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23017024

RESUMO

Despite the fact that noncoding sequences comprise a substantial fraction of functional sites within all genomes, the evolutionary mechanisms that operate on genetic variation within regulatory elements remain poorly understood. In this study, we examine the population genetics of the core, upstream cis-regulatory regions of eight genes (AN, CyIIa, CyIIIa, Endo16, FoxB, HE, SM30 a, and SM50) that function during the early development of the purple sea urchin, Strongylocentrotus purpuratus. Quantitative and qualitative measures of segregating variation are not conspicuously different between cis-regulatory and closely linked "proxy neutral" noncoding regions containing no known functional sites. Length and compound mutations are common in noncoding sequences; conventional descriptive statistics ignore such mutations, under-representing true genetic variation by approximately 28% for these loci in this population. Patterns of variation in the cis-regulatory regions of six of the genes examined (CyIIa, CyIIIa, Endo16, FoxB, AN, and HE) are consistent with directional selection. Genetic variation within annotated transcription factor binding sites is comparable to, and frequently greater than, that of surrounding sequences. Comparisons of two paralog pairs (CyIIa/CyIIIa and AN/HE) suggest that distinct evolutionary processes have operated on their cis-regulatory regions following gene duplication. Together, these analyses provide a detailed view of the evolutionary mechanisms operating on noncoding sequences within a natural population, and underscore how little is known about how these processes operate on cis-regulatory sequences.


Assuntos
Genes Controladores do Desenvolvimento/genética , Elementos Reguladores de Transcrição/genética , Strongylocentrotus purpuratus/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Mutação , Polimorfismo Genético , Strongylocentrotus purpuratus/embriologia
7.
J Hum Evol ; 60(2): 205-212, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21190724

RESUMO

While the hominid fossil record clearly shows that brain size has rapidly expanded over the last ~2.5 M.yr. the forces driving this change remain unclear. One popular hypothesis proposes that metabolic adaptations in response to dietary shifts supported greater encephalization in humans. An increase in meat consumption distinguishes the human diet from that of other great apes. Creatine, an essential metabolite for energy homeostasis in muscle and brain tissue, is abundant in meat and was likely ingested in higher quantities during human origins. Five phosphocreatine circuit proteins help regulate creatine utilization within energy demanding cells. We compared the expression of all five phosphocreatine circuit genes in cerebral cortex, cerebellum, and skeletal muscle tissue for humans, chimpanzees, and rhesus macaques. Strikingly, SLC6A8 and CKB transcript levels are higher in the human brain, which should increase energy availability and turnover compared to non-human primates. Combined with other well-documented differences between humans and non-human primates, this allocation of energy to the cerebral cortex and cerebellum may be important in supporting the increased metabolic demands of the human brain.


Assuntos
Evolução Biológica , Encéfalo/metabolismo , Fosfocreatina/metabolismo , Primatas/genética , Animais , Creatina Quinase Forma BB/genética , Creatina Quinase Forma MM/genética , Creatina Quinase Mitocondrial/genética , Humanos , Macaca mulatta , Proteínas de Membrana Transportadoras/genética , Músculo Esquelético/metabolismo , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA