Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562799

RESUMO

To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.

2.
Front Genet ; 12: 602196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841493

RESUMO

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race toward the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. (2020) and Iwasaki and Yang (2020). All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.

3.
J Immunol ; 197(9): 3669-3679, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698012

RESUMO

Premature atherosclerosis and thrombotic complications are major causes of morbidity and mortality in patients with systemic lupus erythematosus (SLE). However, the high incidence of these complications cannot be explained by traditional risk factors alone, suggesting direct effects of an activated immune system on hemostasis. The unexpected nucleotide sequence homology between SLE patient-derived autoantibodies against complement C1q (Fab anti-C1q) and von Willebrand factor (VWF) led us to investigate a potential interaction between the complement and hemostatic systems on the level of initiating molecules. VWF was found to bind to surface-bound C1q under static conditions. The binding could specifically be inhibited by Fab anti-C1q and C1q-derived peptides. Under shear stress the C1q-VWF interaction was enhanced, resembling the binding of VWF to collagen I. Additionally, we could show that C1q-VWF complexes induced platelet rolling and firm adhesion. Furthermore, we observed VWF binding to C1q-positive apoptotic microparticles and cholesterol crystals, as well as increased VWF deposition in C1q-positive glomeruli of SLE patients compared with control nephropathy. We show, to our knowledge for the first time, binding of VWF to C1q and thus a direct interaction between starter molecules of hemostasis and the classical pathway of complement. This direct interaction might contribute to the pathogenic mechanisms in complement-mediated, inflammatory diseases.


Assuntos
Aterosclerose/imunologia , Plaquetas/imunologia , Complemento C1q/metabolismo , Rim/metabolismo , Lúpus Eritematoso Sistêmico/complicações , Trombose/imunologia , Fator de von Willebrand/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Apoptose , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Hemostasia , Humanos , Rim/patologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Plaquetária , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA