Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(5): e16348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764292

RESUMO

PREMISE: Shared geographical patterns of population genetic variation among related species is a powerful means to identify the historical events that drive diversification. The Sphagnum capillifolium complex is a group of closely related peat mosses within the Sphagnum subgenus Acutifolia and contains several circumboreal species whose ranges encompass both glaciated and unglaciated regions across the northern hemisphere. In this paper, we (1) inferred the phylogeny of subg. Acutifolia and (2) investigated patterns of population structure and genetic diversity among five circumboreal species within the S. capillifolium complex. METHODS: We generated RAD sequencing data from most species of the subg. Acutifolia and samples from across the distribution ranges of circumboreal species within the S. capillifolium complex. RESULTS: We resolved at least 14 phylogenetic clusters within the S. capillifolium complex. Five circumboreal species show some common patterns: One population system comprises plants in eastern North America and Europe, and another comprises plants in the Pacific Northwest or around the Beringian and Arctic regions. Alaska appears to be a hotspot for genetic admixture, genetic diversity, and sometimes endemic subclades. CONCLUSIONS: Our results support the hypothesis that populations of five circumboreal species within the S. capillifolium complex survived in multiple refugia during the last glacial maximum. Long-distance dispersal out of refugia, population bottlenecks, and possible adaptations to conditions unique to each refugium could have contributed to current geographic patterns. These results indicate the important role of historical events in shaping the complex population structure of plants with broad distribution ranges.


Assuntos
Variação Genética , Filogenia , Sphagnopsida , Sphagnopsida/genética
2.
Ann Bot ; 132(1): 77-94, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37417448

RESUMO

BACKGROUND AND AIMS: Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300-500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. METHODS: Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. KEY RESULTS: All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. CONCLUSIONS: These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.


Assuntos
Variação Genética , Sphagnopsida , Animais , Sphagnopsida/genética , Razão de Masculinidade , Células Germinativas Vegetais , Filogenia , Viverridae
3.
Nat Plants ; 9(2): 238-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747050

RESUMO

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Assuntos
Ecossistema , Sphagnopsida , Sequestro de Carbono , Sphagnopsida/fisiologia , Clima , Cromossomos Sexuais
4.
New Phytol ; 236(4): 1497-1511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971292

RESUMO

Sphagnum magellanicum is one of two Sphagnum species for which a reference-quality genome exists to facilitate research in ecological genomics. Phylogenetic and comparative genomic analyses were conducted based on resequencing data from 48 samples and RADseq analyses based on 187 samples. We report herein that there are four clades/species within the S. magellanicum complex in eastern North America and that the reference genome belongs to Sphagnum divinum. The species exhibit tens of thousands (RADseq) to millions (resequencing) of fixed nucleotide differences. Two species, however, referred to informally as S. diabolicum and S. magni because they have not been formally described, are differentiated by only 100 (RADseq) to 1000 (resequencing) of differences. Introgression among species in the complex is demonstrated using D-statistics and f4 ratios. One ecologically important functional trait, tissue decomposability, which underlies peat (carbon) accumulation, does not differ between segregates in the S. magellanicum complex, although previous research showed that many closely related Sphagnum species have evolved differences in decomposability/carbon sequestration. Phylogenetic resolution and more accurate species delimitation in the S. magellanicum complex substantially increase the value of this group for studying the early evolutionary stages of climate adaptation and ecological evolution more broadly.


Assuntos
Briófitas , Sphagnopsida , Sphagnopsida/genética , Filogenia , Ecossistema , Solo , Carbono , Nucleotídeos
5.
Front Plant Sci ; 11: 694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547585

RESUMO

Reference-free reduced representation bisulfite sequencing uses enzymatic digestion for reducing genome complexity and allows detection of markers to study DNA methylation of a high number of individuals in natural populations of non-model organisms. Current methods like epiGBS enquire the use of a higher number of methylated DNA oligos with a significant cost (especially for small labs and first pilot studies). In this paper, we present a modification of this epiGBS protocol that requires the use of only one hemimethylated P2 (common) adapter, which is combined with unmethylated barcoded adapters. The unmethylated cytosines of one chain of the barcoded adapter are replaced by methylated cytosines using nick translation with methylated cytosines in dNTP solution. The basic version of our technique uses only one restriction enzyme, and as a result, genomic fragments are integrated into two orientations with respect to the adapter sequences. Comparing the sequences of two chain orientations makes it possible to reconstruct the original sequence before bisulfite treatment with the help of standard software and newly developed software written in C and described here. We provide a proof of concept via data obtained from almond (Prunus dulcis). Example data and a detailed description of the complete software pipeline starting from the raw reads up until the final differentially methylated cytosines are given in Supplementary Material making this technique accessible to non-expert computer users. The adapter design showed in this paper should allow the use of a two restriction enzyme approach with minor changes in software parameters.

6.
Am J Bot ; 105(6): 1009-1020, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29957852

RESUMO

PREMISE OF THE STUDY: A period of allopatry is widely believed to be essential for the evolution of reproductive isolation. However, strict allopatry may be difficult to achieve in some cosmopolitan, spore-dispersed groups, like mosses. We examined the genetic and genome size diversity in Mediterranean populations of the moss Ceratodon purpureus s.l. to evaluate the role of allopatry and ploidy change in population divergence. METHODS: We sampled populations of the genus Ceratodon from mountainous areas and lowlands of the Mediterranean region, and from Western and Central Europe. We performed phylogenetic and coalescent analyses on sequences from five nuclear introns and a chloroplast locus to reconstruct their evolutionary history. We also estimated genome size using flow cytometry (employing propidium iodide) and determined the sex of samples using a sex-linked PCR marker. KEY RESULTS: Two well-differentiated clades were resolved, discriminating two homogeneous groups: the widespread C. purpureus and a local group mostly restricted to the mountains in Southern Spain. The latter also possessed a genome size 25% larger than the widespread C. purpureus, and the samples of this group consist entirely of females. We also found hybrids, and some of them had a genome size equivalent to the sum of the C. purpureus and Spanish genome, suggesting that they arose by allopolyploidy. CONCLUSIONS: These data suggest that a new species of Ceratodon arose via peripatric speciation, potentially involving a genome size change and a strong female-biased sex ratio. The new species has hybridized in the past with C. purpureus.


Assuntos
Bryopsida/genética , Fluxo Gênico , Especiação Genética , Variação Genética , Ploidias , Tamanho do Genoma , Filogenia , Isolamento Reprodutivo , Razão de Masculinidade
7.
Appl Plant Sci ; 3(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26649267

RESUMO

PREMISE OF THE STUDY: We characterize 10 microsatellite loci in the endangered fern Vandenboschia speciosa (Hymenophyllaceae), enabling studies on the genetic population structure of this Macaronesian-European species using DNA hypervariable markers. METHODS AND RESULTS: Ten primer sets were developed and tested on 47 individuals in a total of two Iberian populations of V. speciosa. The primers amplified di- and hexanucelotide repeats. The number of alleles ranged from two to eight, and the expected heterozygosity ranged from 0.107 to 0.807 among the populations analyzed. CONCLUSIONS: The 10 microsatellite markers developed will be useful in characterizing the genetic diversity of V. speciosa and understanding its population structure (including the possible structure between sporophyte and gametophyte phases) and biogeographic history, and will provide important genetic data for the conservation of this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA