RESUMO
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
RESUMO
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Assuntos
Fermentação , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos , Alimentos Fermentados/microbiologia , Fibras na DietaRESUMO
The advancement of anti-cancer therapies has markedly improved the survival rate of children with cancer, making them long-term childhood cancer survivors (CCS). Nevertheless, these treatments cause a low-grade inflammatory state, determining inflamm-aging and, thus, favoring the early onset of chronic diseases normally associated with old age. Identification of novel and safer therapeutic strategies is needed to counteract and prevent inflamm-aging. Macrophages are cells involved in immune and inflammatory responses, with a pivotal role in iron metabolism, which is related to inflammation. We obtained macrophages from CCS patients and evaluated their phenotype markers, inflammatory states, and iron metabolism by Western blotting, ELISA, and iron assays. We observed a strong increase in classically activated phenotype markers (M1) and iron metabolism alteration in CCS, with an increase in intracellular iron concentration and inflammatory markers. These results suggest that the prevalence of M1 macrophages and alteration of iron metabolism could be involved in the worsening of inflammation in CCS. Therefore, we propose macrophages and iron metabolism as novel therapeutic targets to counteract inflamm-aging. To avoid toxic regimens, we tested some nutraceuticals (resveratrol, curcumin, and oil-enriched lycopene), which are already known to exert anti-inflammatory properties. After their administration, we observed a macrophage switch towards the anti-inflammatory phenotype M2, as well as reductions in pro-inflammatory cytokines and the intracellular iron concentration. Therefore, we suggest-for the first time-that nutraceuticals reduce inflammation in CCS macrophages through a novel anti-inflammatory mechanism of action, modulating iron metabolism.
RESUMO
Celiac disease (CD) is an autoimmune disease characterized by an altered immune response stimulated by gliadin peptides that are not digested and cause damage to the intestinal mucosa. The aim of this study was to investigate whether the postbiotic Lactobacillus paracasei (LP) could prevent the action of gliadin peptides on mTOR, autophagy, and the inflammatory response. Most of the experiments performed were conducted on intestinal epithelial cells Caco-2 treated with a peptic-tryptic digest of gliadin (PTG) and P31-43. Furthermore, we pretreated the Caco-2 with the postbiotic LP before treatment with the previously described stimuli. In both cases, we evaluated the levels of pmTOR, p70S6k, and p4EBP-1 for the mTOR pathway, pNFkß, and pERK for inflammation and LC 3 and p62 for autophagy. For autophagy, we also used immunofluorescence analysis. Using intestinal organoids derivate from celiac (CD) patients, we analyzed the effect of gliadin after postbiotic pretreatment with LP on inflammation marker NFkß. Through these experiments, we showed that gliadin peptides are able to induce the increase of the inflammatory response in a more complex model of intestinal epithelial cells. LP postbiotic was able to induce autophagy in Caco-2 cells and prevent gliadin effects. In conclusion, postbiotic pretreatment with LP could be considered for in vivo clinical trials.
Assuntos
Doença Celíaca , Lacticaseibacillus paracasei , Autofagia , Células CACO-2 , Gliadina/química , Humanos , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Lacticaseibacillus paracasei/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
The intestinal microbiota is a real ecosystem composed of several bacterial species and a very huge amount of strains that through their metabolic activities play a crucial role in the development and performance of the immune system and other functions. Microbiota modulation by probiotics establishes a new era into the pharmaceutical and healthcare market. Probiotics play, in fact, an important role in helping and sustaining human health, but in order to produce benefits, their viability must be preserved throughout the production process up to consumption, and in addition, their bioactivity required to be safeguarded while passing through the gastrointestinal tract. In this frame, encouraging results come from encapsulation strategies that have proven to be very promising in protecting bacteria and their viability. However, specific effort has to be dedicated to the design optimization of the encapsulation process and, in particular, to the processing parameters that affect capsules microstructure. Herein, focusing on calcium alginate microspheres, after a preliminary selection of their processing conditions based on size distribution, we implemented a micro-rheological analysis, by using the multiple-particle tracking technique, to correlate the inner microstructure to the selected process conditions and to the viability of the Lactobacillus paracasei CBA L74. It was assessed that the explored levels of cross-linking, although changing the microorganism constriction, did not affect its viability. The obtained results confirm how this technology is a promising and a valid strategy to protect the microorganism viability and ensure its stability during the production process.
RESUMO
Studies of the ability of probiotics to ferment cereal flours are necessary to obtain products with enhanced nutritional value. In this study, Lactobacillus paracasei CBA-L74 was used to ferment cereal aqueous mixtures containing both oat (7.5% w/v) and rice flours (7.5% w/v), with and without glucose, to understand whether glucose addition could have any effect on growth and metabolism. Viability, pH, metabolites production during fermentation (24 h, 37 °C) and substrates reduction were analysed. The strain showed good growth in the cereal aqueous mixture both with and without glucose addition, but suspensions prepared with glucose showed the best results. A bacterial concentration of 7 log CFU mL-1, a pH value of 4.70 and lactic acid production of 1250 mg L-1 were achieved when fermentation was performed without glucose addition, while in the presence of glucose, a t24 bacterial growth of 8 log CFU mL-1 was reached, with a pH value of 3.11 and lactic acid production of 6050 mg L-1.
RESUMO
Two natural mixtures, Allium sativum fermented extract (BGE) and cannabinol oil extract (CBD), were assessed for their ability to inhibit and remove Pseudomonas aeruginosa biofilms on soft contact lenses in comparison to a multipurpose Soft Contact Lens-care solution present on the Italian market. Pseudomonas aeruginosa (ATCC 9027 strain) and Pseudomonas aeruginosa clinical strains isolated from ocular swabs were tested. Quantification of the biofilm was done using the microtiter plate assay and the fractional inhibitory concentration index was calculated. Both forms of Pseudomonas aeruginosa generated biofilms. BGE at minimal inhibitory concentration (MIC) showed inhibition percentages higher than 55% for both strains, and CBD inhibited biofilm formation by about 70%. The care solution at MIC inhibited biofilm formation by about 50% for both strains tested. The effect of BGE on the eradication of the microbial biofilm on soft contact lenses at MIC was 45% eradication for P. aeruginosa ATCC 9027 and 36% for P. aeruginosa clinical strain. For CBD, we observed 24% biofilm eradication for both strains. For the care solution, the eradication MICs were 43% eradication for P. aeruginosa ATCC 9027 and 41% for P. aeruginosa clinical strain. It was observed that both the test soft contact lenses solution/BGE (fractional inhibitory concentration index: 0.450) and the test soft contact lenses solution/CBD (fractional inhibitory concentration index: 0.153) combinations exhibited synergistic antibiofilm activity against most of the studied bacteria. The study showed that BGE and CBD have good effect on inhibition of biofilm formation and removal of preformed biofilms, which makes them promising agents that could be exploited to develop more effective care solutions.
RESUMO
We previously identified a Neisseria flavescens strain in the duodenum of celiac disease (CD) patients that induced immune inflammation in ex vivo duodenal mucosal explants and in CaCo-2 cells. We also found that vesicular trafficking was delayed after the CD-immunogenic P31-43 gliadin peptide-entered CaCo-2 cells and that Lactobacillus paracasei CBA L74 (L. paracasei-CBA) supernatant reduced peptide entry. In this study, we evaluated if metabolism and trafficking was altered in CD-N. flavescens-infected CaCo-2 cells and if any alteration could be mitigated by pretreating cells with L. paracasei-CBA supernatant, despite the presence of P31-43. We measured CaCo-2 bioenergetics by an extracellular flux analyser, N. flavescens and P31-43 intracellular trafficking by immunofluorescence, cellular stress by TBARS assay, and ATP by bioluminescence. We found that CD-N. flavescens colocalised more than control N. flavescens with early endocytic vesicles and more escaped autophagy thereby surviving longer in infected cells. P31-43 increased colocalisation of N. flavescens with early vesicles. Mitochondrial respiration was lower (P < .05) in CD-N. flavescens-infected cells versus not-treated CaCo-2 cells, whereas pretreatment with L. paracasei-CBA reduced CD-N. flavescens viability and improved cell bioenergetics and trafficking. In conclusion, CD-N. flavescens induces metabolic imbalance in CaCo-2 cells, and the L. paracasei-CBA probiotic could be used to correct CD-associated dysbiosis.
Assuntos
Lacticaseibacillus paracasei/química , Mitocôndrias/efeitos dos fármacos , Neisseria/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Probióticos/farmacologia , Trifosfato de Adenosina/agonistas , Trifosfato de Adenosina/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Células CACO-2 , Doença Celíaca/metabolismo , Doença Celíaca/microbiologia , Doença Celíaca/terapia , Meios de Cultivo Condicionados/farmacologia , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/terapia , Expressão Gênica , Gliadina/antagonistas & inibidores , Gliadina/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Lacticaseibacillus paracasei/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Neisseria/genética , Neisseria/crescimento & desenvolvimento , Neisseria/patogenicidade , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
Coeliac disease is an increasingly recognised pathology, induced by the ingestion of gluten in genetically predisposed patients. Undigested gliadin peptide can induce adaptive and innate immune response that unleash the typical intestinal mucosal alterations. A growing attention is paid to alternative therapeutic approaches to the gluten-free diet: one of these approaches is the use of probiotics and/or postbiotics. We performed lactic fermentation of rice flour with and without pH control, using Lactobacillus paracasei CBA L74 as fermenting strain. We evaluated bacterial growth, lactic acid production during fermentation and gliadin peptide P31-43 entrance in CaCo-2 cells with and without pH control. When pH control was applied no differences were observed in terms of bacterial growth; on the contrary, lactic acid production was greater, as expected. Both samples could inhibit the P31-43 entrance in CaCo-2 cells but the effect was significantly greater for samples obtained when the pH control was applied.
Assuntos
Células Epiteliais/metabolismo , Fermentação , Gliadina/metabolismo , Concentração de Íons de Hidrogênio , Oryza/microbiologia , Fragmentos de Peptídeos/metabolismo , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/prevenção & controle , Dieta Livre de Glúten , Hipersensibilidade Alimentar/prevenção & controle , Alimento Funcional , Gliadina/antagonistas & inibidores , Glutens , Humanos , Ácido Láctico/metabolismo , Lacticaseibacillus paracasei/metabolismo , Oryza/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidoresRESUMO
BACKGROUND: In vivo assays cannot always be conducted because of ethical reasons, technical constraints or costs, but a better understanding of the digestive process, especially in infants, could be of great help in preventing food-related pathologies and in developing new formulas with health benefits. In this context, in vitro dynamic systems to simulate human digestion and, in particular, infant digestion could become increasingly valuable. OBJECTIVE: To simulate the digestive process through the use of a dynamic model of the infant gastroenteric apparatus to study the digestibility of starch-based infant foods. DESIGN: Using M.I.D.A (Model of an Infant Digestive Apparatus), the oral, gastric and intestinal digestibility of two starch-based products were measured: 1) rice starch mixed with distilled water and treated using two different sterilization methods (the classical method with a holding temperature of 121°C for 37 min and the HTST method with a holding temperature of 137°C for 70 sec) and 2) a rice cream with (premium product) or without (basic product) an aliquot of rice flour fermented by Lactobacillus paracasei CBA L74. After the digestion the foods were analyzed for the starch concentration, the amount of D-glucose released and the percentage of hydrolyzed starch. RESULTS: An in vitro dynamic system, which was referred to as M.I.D.A., was obtained. Using this system, the starch digestion occurred only during the oral and intestinal phase, as expected. The D-glucose released during the intestinal phase was different between the classical and HTST methods (0.795 grams for the HTST versus 0.512 for the classical product). The same analysis was performed for the basic and premium products. In this case, the premium product had a significant difference in terms of the starch hydrolysis percentage during the entire process. CONCLUSIONS: The M.I.D.A. system was able to digest simple starches and a more complex food in the correct compartments. In this study, better digestibility of the premium product was revealed.
Assuntos
Trato Gastrointestinal/metabolismo , Modelos Biológicos , Líquidos Corporais , Digestão , Eletrólitos/química , Fermentação , Glucose/metabolismo , Humanos , Hidrólise , Lactente , Oryza/química , Amido/metabolismo , EsterilizaçãoRESUMO
Several recent reports describe a role of probiotics as a therapeutic approach for celiac disease (CD). Two undigested A-gliadin peptides, P31-43 and P57-68, are central to CD pathogenesis, inducing an innate and an adaptive immune response, respectively. They enter enterocytes and localize to vesicular compartment to induce their toxic/immunogenics effects. In this article, we tested the effect of probiotic Lactobacillus paracasei (LP) CBA L74 (International Depository Accession Number LMG P-24778), its supernatant and LP-fermented cereals on gliadin peptides, P31-43 and P57-68, entrance in Caco-2 cells. Both LP CBA L74 and its supernatant inhibit P31-43 (intensity of fluorescence; FI: 75%) and P57-68 (FI: 50%) entrance in Caco2 cells, indicating that this biological effect is due to some product included in LP CBA L74 supernatant. This effect was present also after fermentation of cereals. This study describes a novel effect of probiotics in the prevention of undigested gliadin peptides toxic effects.
Assuntos
Produtos Biológicos/farmacologia , Doença Celíaca/metabolismo , Gliadina/metabolismo , Mucosa Intestinal/metabolismo , Lactobacillus , Peptídeos/metabolismo , Probióticos , Produtos Biológicos/uso terapêutico , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Grão Comestível/microbiologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Fermentação , Humanos , Mucosa Intestinal/efeitos dos fármacos , Probióticos/uso terapêuticoRESUMO
An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.