Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCO Glob Oncol ; 10: e2400173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39236283

RESUMO

PURPOSE: Most research on artificial intelligence-based auto-contouring as template (AI-assisted contouring) for organs-at-risk (OARs) stem from high-income countries. The effect and safety are, however, likely to depend on local factors. This study aimed to investigate the effects of AI-assisted contouring and teaching on contouring time and contour quality among radiation oncologists (ROs) working in low- and middle-income countries (LMICs). MATERIALS AND METHODS: Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs. RESULTS: AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]). CONCLUSION: The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.


Assuntos
Inteligência Artificial , Humanos , Órgãos em Risco/efeitos da radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Feminino , Masculino , Planejamento da Radioterapia Assistida por Computador/métodos , Radio-Oncologistas/educação , Adulto , Pessoa de Meia-Idade
2.
Phys Imaging Radiat Oncol ; 26: 100426, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063613

RESUMO

Background and purpose: Interactive segmentation seeks to incorporate human knowledge into segmentation models and thereby reducing the total amount of editing of auto-segmentations. By performing only interactions which provide new information, segmentation performance may increase cost-effectively. The aim of this study was to develop, evaluate and test feasibility of a deep learning-based single-cycle interactive segmentation model with the input being computer tomography (CT) and a small amount of information rich contours. Methods and Materials: A single-cycle interactive segmentation model, which took CT and the most cranial and caudal contour slices for each of 16 organs-at-risk for head-and-neck cancer as input, was developed. A CT-only model served as control. The models were evaluated with Dice similarity coefficient, Hausdorff Distance 95th percentile and average symmetric surface distance. A subset of 8 organs-at-risk were selected for a feasibility test. In this, a designated radiation oncologist used both single-cycle interactive segmentation and atlas-based auto-contouring for three cases. Contouring time and added path length were recorded. Results: The medians of Dice coefficients increased with single-cycle interactive segmentation in the range of 0.004 (Brain)-0.90 (EyeBack_merged) when compared to CT-only. In the feasibility test, contouring time and added path length were reduced for all three cases as compared to editing atlas-based auto-segmentations. Conclusion: Single-cycle interactive segmentation improved segmentation metrics when compared to the CT-only model and was clinically feasible from a technical and usability point of view. The study suggests that it may be cost-effective to add a small amount of contouring input to deep learning-based segmentation models.

3.
Tomography ; 8(4): 1770-1780, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894014

RESUMO

(1) The current literature contains several studies investigating the correlation between dual-energy-derived iodine concentration (IC) and positron emission tomography (PET)-derived Flourodeoxyglucose (18F-FDG) uptake in patients with non-small-cell lung cancer (NSCLC). In previously published studies, either the entire tumor volume or a region of interest containing the maximum IC or 18F-FDG was assessed. However, the results have been inconsistent. The objective of this study was to correlate IC with FDG both within the entire volume and regional sub-volumes of primary tumors in patients with NSCLC. (2) In this retrospective study, a total of 22 patients with NSCLC who underwent both dual-energy CT (DE-CT) and 18F-FDG PET/CT were included. A region of interest (ROI) encircling the entire primary tumor was delineated, and a rigid registration of the DE-CT, iodine maps and FDG images was performed for the ROI. The correlation between tumor measurements and area-specific measurements of ICpeak and the peak standardized uptake value (SUVpeak) was found. Finally, a correlation between tumor volume and the distance between SUVpeak and ICpeak centroids was found. (3) For the entire tumor, moderate-to-strong correlations were found between SUVmax and ICmax (R = 0.62, p = 0.002), and metabolic tumor volume vs. total iodine content (R = 0.91, p < 0.001), respectively. For local tumor sub-volumes, a negative correlation was found between ICpeak and SUVpeak (R = −0.58, p = 0.0046). Furthermore, a strong correlation was found between the tumor volume and the distance in millimeters between SUVpeak and ICpeak centroids (R = 0.81, p < 0.0001). (4) In patients with NSCLC, high FDG uptakes and high DE-CT-derived iodine concentrations correlated on a whole-tumor level, but the peak areas were positioned at different locations within the tumor. 18F-FDG PET/CT and DE-CT provide complementary information and might represent different underlying patho-physiologies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Iodo , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA