Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049308

RESUMO

In this study, the structural and electrical properties of orthorhombic κ-Ga2O3 films prepared using Halide Vapor Phase Epitaxy (HVPE) on AlN/Si and GaN/sapphire templates were studied. For κ-Ga2O3/AlN/Si structures, the formation of two-dimensional hole layers in the Ga2O3 was studied and, based on theoretical calculations, was explained by the impact of the difference in the spontaneous polarizations of κ-Ga2O3 and AlN. Structural studies indicated that in the thickest κ-Ga2O3/GaN/sapphire layer used, the formation of rotational nanodomains was suppressed. For thick (23 µm and 86 µm) κ-Ga2O3 films grown on GaN/sapphire, the good rectifying characteristics of Ni Schottky diodes were observed. In addition, deep trap spectra and electron beam-induced current measurements were performed for the first time in this polytype. These experiments show that the uppermost 2 µm layer of the grown films contains a high density of rather deep electron traps near Ec - 0.3 eV and Ec - 0.7 eV, whose presence results in the relatively high series resistance of the structures. The diffusion length of the excess charge carriers was measured for the first time in κ-Ga2O3. The film with the greatest thickness of 86 µm was irradiated with protons and the carrier removal rate was about 10 cm-1, which is considerably lower than that for ß-Ga2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA