Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Headache Pain ; 25(1): 88, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807070

RESUMO

BACKGROUND: The purpose of this study was to interrogate brain iron accumulation in participants with acute post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI), and to determine if functional connectivity is affected in areas with iron accumulation. We aimed to examine the correlations between iron accumulation and headache frequency, post-concussion symptom severity, number of mTBIs, and time since most recent TBI. METHODS: Sixty participants with acute PTH and 60 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging including quantitative T2* maps and resting-state functional connectivity imaging. Between group T2* differences were determined using T-tests (p < 0.005, cluster size threshold of 90 voxels). For regions with T2* differences, two analyses were conducted. First, the correlations with clinical variables including headache frequency, number of lifetime mTBIs, time since most recent mTBI, and Sport Concussion Assessment Tool (SCAT) symptom severity scale scores were investigated using linear regression. Second, the functional connectivity of these regions with the rest of the brain was examined (significance of p < 0.05 with family wise error correction for multiple comparisons). RESULTS: The acute PTH group consisted of 60 participants (22 male, 38 female) with average age of 42 ± 14 years. The HC group consisted of 60 age-matched controls (17 male, 43 female, average age of 42 ± 13). PTH participants had lower T2* values compared to HC in the left posterior cingulate and the bilateral cuneus. Stronger functional connectivity was observed between bilateral cuneus and right cerebellar areas in PTH compared to HC. Within the PTH group, linear regression showed negative associations of T2* in the left posterior cingulate with SCAT symptom severity score (p = 0.05) and T2* in the left cuneus with headache frequency (p = 0.04). CONCLUSIONS: Iron accumulation in posterior cingulate and cuneus was observed in those with acute PTH relative to HC; stronger functional connectivity was detected between the bilateral cuneus and the right cerebellum. The correlations of decreased T2* (suggesting higher iron content) with headache frequency and post mTBI symptom severity suggest that the iron accumulation that results from mTBI might reflect the severity of underlying mTBI pathophysiology and associate with post-mTBI symptom severity including PTH.


Assuntos
Encéfalo , Ferro , Imageamento por Ressonância Magnética , Cefaleia Pós-Traumática , Humanos , Feminino , Masculino , Adulto , Cefaleia Pós-Traumática/etiologia , Cefaleia Pós-Traumática/diagnóstico por imagem , Cefaleia Pós-Traumática/fisiopatologia , Ferro/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto Jovem , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Pessoa de Meia-Idade
2.
IEEE Winter Conf Appl Comput Vis ; 2024: 7558-7567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38720667

RESUMO

Harnessing the power of deep neural networks in the medical imaging domain is challenging due to the difficulties in acquiring large annotated datasets, especially for rare diseases, which involve high costs, time, and effort for annotation. Unsupervised disease detection methods, such as anomaly detection, can significantly reduce human effort in these scenarios. While anomaly detection typically focuses on learning from images of healthy subjects only, real-world situations often present unannotated datasets with a mixture of healthy and diseased subjects. Recent studies have demonstrated that utilizing such unannotated images can improve unsupervised disease and anomaly detection. However, these methods do not utilize knowledge specific to registered neuroimages, resulting in a subpar performance in neurologic disease detection. To address this limitation, we propose Brainomaly, a GAN-based image-to-image translation method specifically designed for neurologic disease detection. Brainomaly not only offers tailored image-to-image translation suitable for neuroimages but also leverages unannotated mixed images to achieve superior neurologic disease detection. Additionally, we address the issue of model selection for inference without annotated samples by proposing a pseudo-AUC metric, further enhancing Brainomaly's detection performance. Extensive experiments and ablation studies demonstrate that Brainomaly outperforms existing state-of-the-art unsupervised disease and anomaly detection methods by significant margins in Alzheimer's disease detection using a publicly available dataset and headache detection using an institutional dataset. The code is available from https://github.com/mahfuzmohammad/Brainomaly.

3.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585756

RESUMO

Background: The purpose of this study was to interrogate brain iron accumulation in participants with acute post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI), and to determine if functional connectivity is affected in areas with iron accumulation. We aimed to examine the correlations between iron accumulation and headache frequency, post-concussion symptom severity, number of mTBIs and time since most recent TBI. Methods: Sixty participants with acute PTH and 60 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging including quantitative T2* maps and resting-state functional connectivity imaging. Between group T2* differences were determined using T-tests (p < 0.005, cluster size threshold of 10 voxels). For regions with T2* differences, two analyses were conducted. First, the correlations with clinical variables including headache frequency, number of lifetime mTBIs, time since most recent mTBI, and Sport Concussion Assessment Tool (SCAT) symptom severity scale scores were investigated using linear regression. Second, the functional connectivity of these regions with the rest of the brain was examined (significance of p < 0.05 with family wise error correction for multiple comparisons). Results: The acute PTH group consisted of 60 participants (22 male, 38 female) with average age of 42 ± 14 years. The HC group consisted of 60 age-matched controls (17 male, 43 female, average age of 42 ± 13). PTH participants had lower T2* values compared to HC in the left posterior cingulate and the bilateral cuneus. Stronger functional connectivity was observed between bilateral cuneus and right cerebellar areas in PTH compared to HC. Within the PTH group, linear regression showed negative associations of T2* and SCAT symptom severity score in the left posterior cingulate (p = 0.05) and with headache frequency in the left cuneus (p = 0.04). Conclusions: Iron accumulation in posterior cingulate and cuneus was observed in those with acute PTH relative to HC; stronger functional connectivity was detected between the bilateral cuneus and the right cerebellum. The correlations of decreased T2* (suggesting higher iron content) with headache frequency and post mTBI symptom severity suggest that the iron accumulation that results from mTBI might reflect the severity of underlying mTBI pathophysiology and associate with post-mTBI symptom severity including PTH.

4.
Brain Commun ; 5(1): fcac311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36751567

RESUMO

Data-driven machine-learning methods on neuroimaging (e.g. MRI) are of great interest for the investigation and classification of neurological diseases. However, traditional machine learning requires domain knowledge to delineate the brain regions first, followed by feature extraction from the regions. Compared with this semi-automated approach, recently developed deep learning methods have advantages since they do not require such prior knowledge; instead, deep learning methods can automatically find features that differentiate MRIs from different cohorts. In the present study, we developed a deep learning-based classification pipeline distinguishing brain MRIs of individuals with one of three types of headaches [migraine (n = 95), acute post-traumatic headache (n = 48) and persistent post-traumatic headache (n = 49)] from those of healthy controls (n = 532) and identified the brain regions that most contributed to each classification task. Our pipeline included: (i) data preprocessing; (ii) binary classification of healthy controls versus headache type using a 3D ResNet-18; and (iii) biomarker extraction from the trained 3D ResNet-18. During the classification at the second step of our pipeline, we resolved two common issues in deep learning methods, limited training data and imbalanced samples from different categories, by incorporating a large public data set and resampling among the headache cohorts. Our method achieved the following classification accuracies when tested on independent test sets: (i) migraine versus healthy controls-75% accuracy, 66.7% sensitivity and 83.3% specificity; (2) acute post-traumatic headache versus healthy controls-75% accuracy, 66.7% sensitivity and 83.3% specificity; and (3) persistent post-traumatic headache versus healthy controls-91.7% accuracy, 100% sensitivity and 83.3% specificity. The most significant biomarkers identified by the classifier for migraine were caudate, caudal anterior cingulate, superior frontal, thalamus and ventral diencephalon. For acute post-traumatic headache, lateral occipital, cuneus, lingual, pericalcarine and superior parietal regions were identified as most significant biomarkers. Finally, for persistent post-traumatic headache, the most significant biomarkers were cerebellum, middle temporal, inferior temporal, inferior parietal and superior parietal. In conclusion, our study shows that the deep learning methods can automatically detect aberrations in the brain regions associated with different headache types. It does not require any human knowledge as input which significantly reduces human effort. It uncovers the great potential of deep learning methods for classification and automatic extraction of brain imaging-based biomarkers for these headache types.

5.
Cephalalgia ; 43(2): 3331024221144783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756979

RESUMO

OBJECTIVES: The objective of this longitudinal study was to determine whether brain iron accumulation, measured using magnetic resonance imaging magnetic transverse relaxation rates (T2*), is associated with response to erenumab for the treatment of migraine. METHODS: Participants (n = 28) with migraine, diagnosed using international classification of headache disorders 3rd edition criteria, were eligible if they had six to 25 migraine days during a four-week headache diary run-in phase. Participants received two treatments with 140 mg erenumab, one immediately following the pre-treatment run-in phase and a second treatment four weeks later. T2* data were collected immediately following the pre-treatment phase, and at two weeks and eight weeks following the first erenumab treatment. Patients were classified as erenumab responders if their migraine-day frequency at five-to-eight weeks post-initial treatment was reduced by at least 50% compared to the pre-treatment run-in phase. A longitudinal Sandwich estimator approach was used to compare longitudinal group differences (responders vs non-responders) in T2* values, associated with iron accumulation. Group visit effects were calculated with a significance threshold of p = 0.005 and cluster forming threshold of 250 voxels. T2* values of 19 healthy controls were used for a reference. The average of each significant region was compared between groups and visits with Bonferroni corrections for multiple comparisons with significance defined as p < 0.05. RESULTS: Pre- and post-treatment longitudinal imaging data were available from 28 participants with migraine for a total of 79 quantitative T2* images. Average subject age was 42 ± 13 years (25 female, three male). Of the 28 subjects studied, 53.6% were erenumab responders. Comparing longitudinal T2* between erenumab responders vs non-responders yielded two comparisons which survived the significance threshold of p < 0.05 after correction for multiple comparisons: the difference at eight weeks between the erenumab-responders and non-responders in the periaqueductal gray (mean ± standard error; responders 43 ± 1 ms vs non-responders 32.5 ± 1 ms, p = 0.002) and the anterior cingulate cortex (mean ± standard error; responders 50 ± 1 ms vs non-responders 40 ± 1 ms, p = 0.01). CONCLUSIONS: Erenumab response is associated with higher T2* in the periaqueductal gray and anterior cingulate cortex, regions that participate in pain processing and modulation. T2* differences between erenumab responders vs non-responders, a measure of brain iron accumulation, are seen at eight weeks post-treatment. Less iron accumulation in the periaqueductal gray and anterior cingulate cortex might play a role in the therapeutic mechanisms of migraine reduction associated with erenumab.


Assuntos
Transtornos de Enxaqueca , Substância Cinzenta Periaquedutal , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Estudos Longitudinais , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/tratamento farmacológico , Ferro , Resultado do Tratamento
6.
Headache ; 63(1): 156-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651577

RESUMO

OBJECTIVE: To explore alterations in thalamic subfield volume and iron accumulation in individuals with post-traumatic headache (PTH) relative to healthy controls. BACKGROUND: The thalamus plays a pivotal role in the pathomechanism of pain and headache, yet the role of the thalamus in PTH attributed to mild traumatic brain injury (mTBI) remains unclear. METHODS: A total of 107 participants underwent multimodal T1-weighted and T2* brain magnetic resonance imaging. Using a clinic-based observational study, thalamic subfield volume and thalamic iron accumulation were explored in 52 individuals with acute PTH (mean age = 41.3; standard deviation [SD] = 13.5), imaged on average 24 days post mTBI, and compared to 55 healthy controls (mean age = 38.3; SD = 11.7) without history of mTBI or migraine. Symptoms of mTBI and headache characteristics were assessed at baseline (0-59 days post mTBI) (n = 52) and 3 months later (n = 46) using the Symptom Evaluation of the Sports Concussion Assessment Tool (SCAT-5) and a detailed headache history questionnaire. RESULTS: Relative to controls, individuals with acute PTH had significantly less volume in the lateral geniculate nucleus (LGN) (mean volume: PTH = 254.1, SD = 43.4 vs. controls = 278.2, SD = 39.8; p = 0.003) as well as more iron deposition in the left LGN (PTH: T2* signal = 38.6, SD = 6.5 vs. controls: T2* signal = 45.3, SD = 2.3; p = 0.048). Correlations in individuals with PTH revealed a positive relationship between left LGN T2* iron deposition and SCAT-5 symptom severity score at baseline (r = -0.29, p = 0.019) and maximum headache intensity at the 3-month follow-up (r = -0.47, p = 0.002). CONCLUSION: Relative to healthy controls, individuals with acute PTH had less volume and higher iron deposition in the left LGN. Higher iron deposition in the left LGN might reflect mTBI severity and poor headache recovery.


Assuntos
Concussão Encefálica , Cefaleia Pós-Traumática , Humanos , Adulto , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Cefaleia Pós-Traumática/diagnóstico por imagem , Cefaleia Pós-Traumática/etiologia , Cefaleia , Tálamo/diagnóstico por imagem , Ferro
7.
J Headache Pain ; 23(1): 159, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517767

RESUMO

BACKGROUND: Migraine involves central and peripheral nervous system mechanisms. Erenumab, an anti-calcitonin gene-related peptide (CGRP) receptor monoclonal antibody with little central nervous system penetrance, is effective for migraine prevention. The objective of this study was to determine if response to erenumab is associated with alterations in brain functional connectivity and pain-induced brain activations. METHODS: Adults with 6-25 migraine days per month during a 4-week headache diary run-in phase underwent pre-treatment brain functional MRI (fMRI) that included resting-state functional connectivity and BOLD measurements in response to moderately painful heat stimulation to the forearm. This was followed by two treatments with 140 mg erenumab, at baseline and 4 weeks later. Post-treatment fMRI was performed 2 weeks and 8 weeks following the first erenumab treatment. A longitudinal Sandwich estimator analysis was used to identify pre- to post-treatment changes in resting-state functional connectivity and brain activations in response to thermal pain. fMRI findings were compared between erenumab treatment-responders vs. erenumab non-responders. RESULTS: Pre- and post-treatment longitudinal imaging data were available from 32 participants. Average age was 40.3 (+/- 13) years and 29 were female. Pre-treatment average migraine day frequency was 13.8 (+/- 4.7) / 28 days and average headache day frequency was 15.8 (+/- 4.4) / 28 days. Eighteen of 32 (56%) were erenumab responders. Compared to erenumab non-responders, erenumab responders had post-treatment differences in 1) network functional connectivity amongst pain-processing regions, including higher global efficiency, clustering coefficient, node degree, regional efficiency, and modularity, 2) region-to-region functional connectivity between several regions including temporal pole, supramarginal gyrus, and hypothalamus, and 3) pain-induced activations in the middle cingulate, posterior cingulate, and periaqueductal gray matter. CONCLUSIONS: Reductions in migraine day frequency accompanying erenumab treatment are associated with changes in resting state functional connectivity and central processing of extracranial painful stimuli that differ from erenumab non-responders. TRIAL REGISTRATION: clinicaltrials.gov (NCT03773562).


Assuntos
Transtornos de Enxaqueca , Adulto , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Cefaleia , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/tratamento farmacológico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Pessoa de Meia-Idade
8.
Neurobiol Pain ; 12: 100102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531616

RESUMO

This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased N-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.

9.
Cephalalgia ; 42(4-5): 357-365, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34644192

RESUMO

OBJECTIVES: Although iron accumulation in pain-processing brain regions has been associated with repeated migraine attacks, brain structural changes associated with post-traumatic headache have yet to be elucidated. To determine whether iron accumulation is associated with acute post-traumatic headache, magnetic resonance transverse relaxation rates (T2*) associated with iron accumulation were investigated between individuals with acute post-traumatic headache attributed to mild traumatic brain injury and healthy controls. METHODS: Twenty individuals with acute post-traumatic headache and 20 age-matched healthy controls underwent 3T brain magnetic resonance imaging including quantitative T2* maps. T2* differences between individuals with post-traumatic headache versus healthy controls were compared using age-matched paired t-tests. Associations of T2* values with headache frequency and number of mild traumatic brain injuries were investigated using multiple linear regression in individuals with post-traumatic headache. Significance was determined using uncorrected p-value and cluster size threshold. RESULTS: Individuals with post-traumatic headache had lower T2* values compared to healthy controls in cortical (bilateral frontal, bilateral anterior and posterior cingulate, right postcentral, bilateral temporal, right supramarginal, right rolandic, left insula, left occipital, right parahippocampal), subcortical (left putamen, bilateral hippocampal) and brainstem regions (pons). Within post-traumatic headache subjects, multiple linear regression showed a negative association between T2* in the right inferior parietal/supramarginal regions and number of mild traumatic brain injuries and a negative association between T2* in bilateral cingulate, bilateral precuneus, bilateral supplementary motor areas, bilateral insula, right middle temporal and right lingual areas and headache frequency. CONCLUSIONS: Acute post-traumatic headache is associated with iron accumulation in multiple brain regions. Correlations with headache frequency and number of lifetime mild traumatic brain injuries suggest that iron accumulation is part of the pathophysiology or a marker of mild traumatic brain injury and post-traumatic headache.


Assuntos
Transtornos de Enxaqueca , Cefaleia Pós-Traumática , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Cefaleia Pós-Traumática/diagnóstico por imagem , Cefaleia Pós-Traumática/etiologia
10.
Headache ; 61(8): 1159-1179, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34407215

RESUMO

OBJECTIVE: To summarize major results from imaging studies investigating brain structure in migraine. BACKGROUND: Neuroimaging studies, using several different imaging and analysis techniques, have demonstrated aberrations in brain structure associated with migraine. This narrative review summarizes key imaging findings and relates imaging findings with clinical features of migraine. METHODS: We searched PubMed for English language articles using the key words "neuroimaging" AND/OR "MRI" combined with "migraine" through August 20, 2020. The titles and abstracts of resulting articles were reviewed for their possible inclusion in this manuscript, followed by examination of the full texts and reference lists of relevant articles. RESULTS: Migraine is associated with structural brain aberrations within regions that participate in pain processing, the processing of other sensory stimuli, multisensory integration, and in white matter fiber tracts. Furthermore, migraine is associated with magnetic resonance imaging T2/fluid-attenuated inversion recovery white matter hyperintensities. Some structural aberrations are correlated with the severity and clinical features of migraine, whereas others are not. These findings suggest that some structural abnormalities are associated with or amplified by recurrent migraine attacks, whereas others are intrinsic to the migraine brain. CONCLUSIONS: Migraine is associated with aberrant brain structure. Structural neuroimaging studies contribute to understanding migraine pathophysiology and identification of brain regions associated with migraine and its individual symptoms. Additional work is needed to determine the extent to which structural aberrations are a result of recurrent migraine attacks, and perhaps reversible with effective treatment or migraine resolution, versus being intrinsic traits of the migraine brain.


Assuntos
Transtornos de Enxaqueca/patologia , Neuroimagem , Humanos , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/fisiopatologia
11.
J Headache Pain ; 22(1): 82, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301180

RESUMO

BACKGROUND/OBJECTIVE: Changes in speech can be detected objectively before and during migraine attacks. The goal of this study was to interrogate whether speech changes can be detected in subjects with post-traumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) and whether there are within-subject changes in speech during headaches compared to the headache-free state. METHODS: Using a series of speech elicitation tasks uploaded via a mobile application, PTH subjects and healthy controls (HC) provided speech samples once every 3 days, over a period of 12 weeks. The following speech parameters were assessed: vowel space area, vowel articulation precision, consonant articulation precision, average pitch, pitch variance, speaking rate and pause rate. Speech samples of subjects with PTH were compared to HC. To assess speech changes associated with PTH, speech samples of subjects during headache were compared to speech samples when subjects were headache-free. All analyses were conducted using a mixed-effect model design. RESULTS: Longitudinal speech samples were collected from nineteen subjects with PTH (mean age = 42.5, SD = 13.7) who were an average of 14 days (SD = 32.2) from their mTBI at the time of enrollment and thirty-one HC (mean age = 38.7, SD = 12.5). Regardless of headache presence or absence, PTH subjects had longer pause rates and reductions in vowel and consonant articulation precision relative to HC. On days when speech was collected during a headache, there were longer pause rates, slower sentence speaking rates and less precise consonant articulation compared to the speech production of HC. During headache, PTH subjects had slower speaking rates yet more precise vowel articulation compared to when they were headache-free. CONCLUSIONS: Compared to HC, subjects with acute PTH demonstrate altered speech as measured by objective features of speech production. For individuals with PTH, speech production may have been more effortful resulting in slower speaking rates and more precise vowel articulation during headache vs. when they were headache-free, suggesting that speech alterations were related to PTH and not solely due to the underlying mTBI.


Assuntos
Concussão Encefálica , Transtornos de Enxaqueca , Cefaleia Pós-Traumática , Adulto , Concussão Encefálica/complicações , Cefaleia , Humanos , Cefaleia Pós-Traumática/etiologia , Fala
12.
Mol Neurobiol ; 55(10): 8071-8083, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29508280

RESUMO

Defect in brain microperfusion is increasingly recognized as an antecedent event to Alzheimer's disease (AD) and ischemia. Nevertheless, studies on the role of impaired microperfusion as a pathological trigger to neuroinflammation, Aß deposition as well as blood-brain barrier (BBB) disruption, and the etiological link between AD and ischemia are lacking. In this study, we employ in vivo sequential magnetic resonance imaging (MRI) and computed tomography (CT) imaging in a co-morbid rat model of ß-amyloid toxicity (Aß) and ischemia (ET1) with subsequent histopathology of striatal lesion core and penumbra at 1, 7, and 28 days post injury. Within 24 h, cerebral injury resulted in increased BBB permeability due to the dissolution of ß-dystroglycan (ß-DG) and basement membrane laminin by active matrix metalloproteinase9 (MMP9). As a result, net flow of circulating IgG down a hydrostatic gradient into the parenchyma led to vasogenic edema and impaired perfusion, thus increasing the apparent hyperintensity in true fast imaging with steady-state free precession (true FISP) imaging and acute hypoperfusion in CT. This was followed by a slow recruitment of reactive astroglia to the affected brain and depolarization of aquaporin4 (AQP4) expression resulting in cytotoxic edema-in an attempt to resolve vasogenic edema. On d28, functional BBB was restored in ET1 rats as observed by astrocytic MMP9 release, ß-DG stabilization, and new vessel formation. This was confirmed by reduced hyperintensity on true FISP imaging and normalized cerebral blood flow in CT. While, Aß toxicity alone was not detrimental enough, Aß+ET1 rats showed delayed differential expression of MMP9, late recruitment of astroglial cells, protracted loss of AQP4 depolarization, and thus delayed BBB restoration and cerebral perfusion.


Assuntos
Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/patologia , Regeneração Nervosa , Peptídeos beta-Amiloides/toxicidade , Animais , Aquaporina 4/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Comorbidade , Modelos Animais de Doenças , Imunoglobulina G/metabolismo , Imageamento por Ressonância Magnética , Masculino , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Regeneração Nervosa/efeitos dos fármacos , Ratos Wistar
13.
Neurobiol Aging ; 54: 103-111, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363111

RESUMO

The hippocampus is a critical site for alterations that are responsible for age-related changes in memory. Here, we present a relatively novel approach of examining the relationship between memory performance and glutamate-glutamine levels using short echo time magnetic resonance spectroscopy. Specifically, we investigated the relationship between Glx (a composite of glutamate and glutamine) levels in the hippocampus, performance on a word-recall task, and resting-state functional connectivity. While there was no overall difference in Glx intensity between young and aging adults, we identified a positive correlation between delayed word-list recall and Glx, bilaterally in older adults, but not in young adults. Collapsed across age, we also discovered a negative relationship between Glx intensity and resting-state functional connectivity between the anterior hippocampus and regions in the subcallosal gyrus. These findings demonstrate the possible utility of Glx in identifying age-related changes in the brain and behavior and provide encouragement that magnetic resonance spectroscopy can be useful in predicting age-related decline before any physical abnormalities are present.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Imageamento por Ressonância Magnética , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Memória/fisiologia , Comportamento Verbal/fisiologia , Adulto , Idoso , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Transtornos da Memória/metabolismo
14.
Epilepsy Res ; 116: 1-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26354161

RESUMO

Malformations of cortical development are disturbances in brain formation that arise from abnormalities affecting the processes of cortical development. Surgical treatment of intractable epilepsy in patients with malformations of cortical development requires localization of both epileptogenic and eloquent cortices. Functional magnetic resonance imaging has been shown to detect the reorganization of activation patterns in such patients. The purpose of this study was to determine whether functional reorganization of the primary sensory and motor cortices occurs in patients with epileptogenic malformations of cortical development. Functional MRI data were obtained for 11 patients (four male, seven female) with a mean age of 36 years (range 18-55 years). The mean age at epilepsy onset was 23 years (range 3-55 years). Twelve healthy controls (six male, six female) with mean age of 33 years (range 28-51 years) were also recruited for comparison. High resolution anatomical MRI was used to confirm the presence and the location of the malformation. All imaging experiments were performed using a 3.0T Siemens Tim Trio whole body MRI. Each subject performed four block-paradigm fMRI experiments to study motor and sensory activation for each hand. A total of 132 image sets were collected for each paradigm over 5.5min (2.5s per image). Each paradigm consisted of seven stimulus periods lasting 30s (12 images) and stimulus onset of 30, 90, 150, 210 and 270s. Functional data were obtained from all eligible patients and compared to those of controls. Reorganization and reduction in function in the motor and sensory areas were observed in patients with cortical dysplasia. Patients with polymicrogyria did not present with significant functional reorganization and patients with heterotopias and coexisting polymicrogyria and/or cortical dysplasia had variable patterns of activation. In summary, this study showed evidence of functional reorganization of sensory and motor cortices in patients with cortical dysplasia development. Such information should be carefully considered in surgical planning and treatment.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/patologia , Epilepsias Parciais/patologia , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto , Mapeamento Encefálico , Epilepsias Parciais/complicações , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Malformações do Desenvolvimento Cortical/complicações , Pessoa de Meia-Idade , Oxigênio/sangue , Adulto Jovem
15.
Neurobiol Aging ; 35(7): 1605-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24491422

RESUMO

Numerous clinical and epidemiological reports indicate that patients with history of vascular illness such as stroke are more likely to develop dementia as the clinical manifestation of Alzheimer's disease. However, there are little data regarding the pathologic mechanisms that link vascular risk factors to the factors associated with dementia onset. We provide evidence that suggests intriguing detrimental interactions between stroke and ß-amyloid (Aß) toxicity in the hippocampus. Stroke was induced by unilateral striatal injection of endothelin-1, the potent vasoconstrictor. Aß toxicity was modeled by bilateral intracerebroventricular injections of the toxic fragment Aß. Gross morphologic changes in comorbid Aß and stroke rats were enlargement of the lateral ventricles with concomitant shrinkage of the hippocampus. The hippocampus displayed a series of synergistic biochemical alterations, including microgliosis, deposition of Aß precursor protein fragments, and cellular degeneration. In addition, there was bilateral induction of connexin43, reduced neuronal survival, and impaired dendritic development of adult-born immature neurons in the dentate gyrus of these rats compared with either rats alone. Behaviorally, there was impairment in the hippocampal-based discriminative fear-conditioning to context task indicating learning and memory deficit. These results suggest an insight into the relationship between hippocampal atrophy, pathology, and functional impairment. Our work not only highlights the exacerbated pathology that emerges when Aß toxicity and stroke occur comorbidly but also demonstrates that this comorbid rat model exhibits physiopathology that is highly characteristic of the human condition.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Demência/etiologia , Demência/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Acidente Vascular Cerebral/complicações , Peptídeos beta-Amiloides/administração & dosagem , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atrofia , Conexina 43/metabolismo , Modelos Animais de Doenças , Endotelina-1 , Humanos , Injeções Intraventriculares , Masculino , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/patologia , Vasoconstritores
16.
J Neurosci ; 33(37): 14908-20, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027290

RESUMO

One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities.


Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Função Executiva/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Splicing de RNA/genética , Proteínas Vesiculares de Transporte de Acetilcolina/deficiência , Acetilcolina/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Colina/metabolismo , Inibidores da Colinesterase/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Galantamina/farmacologia , Inositol/metabolismo , Ácido Láctico/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Taurina/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética
17.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729591

RESUMO

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Choque Térmico/metabolismo , Isquemia/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Animais , Blastocisto/metabolismo , Western Blotting , Fator de Transcrição CDX2 , Células Cultivadas , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Isquemia/genética , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Príons/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
J Neurosci Methods ; 179(1): 22-8, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19428507

RESUMO

The purpose of this study was to characterize the magnitude and duration of cerebral blood flow (CBF) reduction in the somatosensory cortical region in a rat model of middle cerebral artery occlusion (MCAO) induced by endothelin-1 (ET1) microinjection under isoflurane anesthesia. MCAO was induced by microinjection of ET1 proximal to the MCA in 41 isoflurane-anesthetized male Sprague-Dawley rats. Three doses of ET1 were studied, 60 pmol (Group 1), 150 pmol (Group 2), and 300 pmol (Group 3). CBF was monitored for 4h following injection using a laser Doppler probe stereotaxically inserted into the left somatosensory cortical region. Computed tomography perfusion imaging was used to verify the extent and duration of blood flow reduction in a subset of 12 animals. The magnitude and duration of blood flow reduction was variable (60-92% of baseline). The 300 pmol dose provided the greatest sustained decrease in blood flow. Evidence of tissue damage was obtained in cases where CBF decreased to <40% of baseline. At the doses studied, ET1-induced ischemia in the presence of isoflurane anesthesia can be used as a minimally invasive but variable model of MCAO. The model is well suited for acute imaging studies of ischemia.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Endotelina-1/administração & dosagem , Infarto da Artéria Cerebral Média/induzido quimicamente , Córtex Somatossensorial/irrigação sanguínea , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Infarto da Artéria Cerebral Média/patologia , Masculino , Microinjeções , Perfusão , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/patologia , Tomografia Computadorizada por Raios X
19.
Magn Reson Imaging ; 26(3): 323-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18060718

RESUMO

Previous studies have shown that T2(dagger)-weighted magnetic resonance images acquired using localization by adiabatic selective refocusing (LASER) can provide early tissue contrast following ischemia, possibly due to alterations in microscopic susceptibility within the tissue. The purpose of this study was to make a direct in vivo comparison of T2-, T2(dagger)- and diffusion-weighted image contrast during acute ischemia. Acute middle cerebral artery (MCA) occlusion was attempted in 14 rats using a modified Tamura approach incorporating electrocoagulation of the left MCA. T2(dagger)-weighted LASER images (Echo Time [TE]=108 ms), T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) images (TE=110 ms) and diffusion-weighted images (b value=105 s/mm(2)) were acquired at 4 T within 1.5 h of ischemia onset. Tissue contrast in the MCA territory was quantified for histologically verified ischemic tissue (n=6) and in sham controls (n=4). T2(dagger)-weighted LASER images demonstrated greater contrast compared to the T2-weighted CPMG images, and more focal contrast compared to the diffusion-weighted images, suggesting different contrast mechanisms were involved.


Assuntos
Isquemia Encefálica/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Doença Aguda , Algoritmos , Animais , Modelos Animais de Doenças , Masculino , Artéria Cerebral Média , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Neurosci Methods ; 156(1-2): 368-75, 2006 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16682080

RESUMO

Signal changes observed in high-resolution in vivo magnetic resonance (MR) images acquired during cerebral ischemia in small animal models must be correlated to molecular indicators of tissue damage obtained from digitized histological brain sections. An effective image registration technique that incorporates both a linear and non-linear thin plate spline transform was developed to compensate the distortions that occur in the brain during the extraction, fixation, and staining process. Features in different layers of the brain were utilized in conjunction with a radial guideline-assisted landmark selection method to register tissue layers with few distinguishing characteristics. Quantitative analysis using simulated data demonstrated average registration error of 400 microm (corresponding to approximately 2.5 pixels in the MR images) when > or =50 landmark points are used. Visual agreement was obtained between T(1)-weighted MR images and 2,3,5-triphenyltetrazolium chloride stained histology. These methods will allow accurate registration of in vivo images with histology to correlate in vivo surrogate markers of tissue damage with specific histological indicators of disease.


Assuntos
Encéfalo/anatomia & histologia , Corantes , Sais de Tetrazólio , Animais , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Dinâmica não Linear , Coelhos , Reprodutibilidade dos Testes , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA