Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(37): 44663-44672, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494814

RESUMO

Sub-micron-size light sources are currently extremely dim, achieving nanowatt output powers due to the current density and temperature droop. Recently, we reported a droop-free fin light-emitting diode (LED) pixel that at high current densities becomes a laser with record output power in the microwatt range. Here, we show a scalable method for selectively metallizing fins via their nonpolar side facet that allows electrical injection to sub-200 nm wide n-ZnO fins on p-GaN with at least 0.8 µm2 active area. Electrically addressable fin LEDs are fabricated in a linear array format using standard 2 µm resolution photolithography. Electroluminescence analysis across different pixels shows that the fin acts as the active region of the LED and generates a narrow-band ultraviolet emission between ≈368 and ≈390 nm. Investigating fins at high current densities, ranging from 100 to 2000 kA/cm2, shows that their emission increases without any decline even as the junction temperature reaches a range of 200-340 °C. The absence of electron leakage to p-GaN at high injection levels and an undetectable electron-hole escape from the fin at high temperatures indicate that the fin shape is highly efficient in controlling the nonradiative recombination pathways such as Auger recombination. The fin LED geometry is expected to enable the realization of high-brightness arrays of light sources at sub-micron-size regimes suitable for operation at high temperatures and high current densities.

2.
Sci Adv ; 6(33): eaba4346, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32851164

RESUMO

"Efficiency droop," i.e., a decline in brightness of light-emitting diodes (LEDs) at high electrical currents, limits the performance of all commercial LEDs and has limited the output power of submicrometer LEDs and lasers to nanowatts. We present a fin p-n junction LED pixel that eliminates efficiency droop, allowing LED brightness to increase linearly with current. With record current densities of 1000 kA/cm2, the LEDs transition to lasing, with brightness over 20 µW. Despite a light extraction efficiency of only 15%, these devices exceed the output power of any previous electrically driven submicrometer LED or laser pixel by 100 to 1000 times while showing comparable external quantum efficiencies. Modeling suggests that spreading of the electron-hole recombination region in fin LEDs at high injection levels suppresses the nonradiative Auger recombination processes. Further refinement of this design is expected to enable a new generation of high-brightness LED and laser pixels for macro- and microscale applications.

3.
ACS Nano ; 11(1): 526-540, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27983787

RESUMO

For environmental studies assessing uptake of orally ingested engineered nanoparticles (ENPs), a key step in ensuring accurate quantification of ingested ENPs is efficient separation of the organism from ENPs that are either nonspecifically adsorbed to the organism and/or suspended in the dispersion following exposure. Here, we measure the uptake of 30 and 60 nm gold nanoparticles (AuNPs) by the nematode, Caenorhabditis elegans, using a sucrose density gradient centrifugation protocol to remove noningested AuNPs. Both conventional inductively coupled plasma mass spectrometry (ICP-MS) and single particle (sp)ICP-MS are utilized to measure the total mass and size distribution, respectively, of ingested AuNPs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) imaging confirmed that traditional nematode washing procedures were ineffective at removing excess suspended and/or adsorbed AuNPs after exposure. Water rinsing procedures had AuNP removal efficiencies ranging from 57 to 97% and 22 to 83%, while the sucrose density gradient procedure had removal efficiencies of 100 and 93 to 98%, respectively, for the 30 and 60 nm AuNP exposure conditions. Quantification of total Au uptake was performed following acidic digestion of nonexposed and Au-exposed nematodes, whereas an alkaline digestion procedure was optimized for the liberation of ingested AuNPs for spICP-MS characterization. Size distributions and particle number concentrations were determined for AuNPs ingested by nematodes with corresponding confirmation of nematode uptake via high-pressure freezing/freeze substitution resin preparation and large-area SEM imaging. Methods for the separation and in vivo quantification of ENPs in multicellular organisms will facilitate robust studies of ENP uptake, biotransformation, and hazard assessment in the environment.


Assuntos
Caenorhabditis elegans/química , Ouro/isolamento & purificação , Nanopartículas Metálicas/química , Imagem Óptica , Animais , Centrifugação com Gradiente de Concentração , Ouro/química , Espectrometria de Massas , Tamanho da Partícula , Sacarose/química , Propriedades de Superfície
4.
Adv Mater Interfaces ; 3(5)2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088067

RESUMO

Understanding and developing metrics on how nanocrystals respond to local external surface stimuli at their interfaces during growth or operation is a key step in advancing scalable and deterministic approaches for fabricating functional one- and two-dimensional (1D and 2D) nanoscale networks. Here, we present early results on a general approach for surface-directed nanocrystal epitaxy on a surface with an irregular lattice constant. We show that patches of lattice matched areas as small as 7 nm in a background of surface lattice disorder could satisfy the condition for epitaxial growth of a crawling nanocrystal over the disordered region. Threshold of failure in nanocrystal epitaxy is found to depend on the spacing between the patches and their total surface area. Results indicate nanoepitaxy on a disordered surface occurs if it contains patches of lattice matched regions with at least 20% of surface coverage, illustrating the remarkable tolerance of this type of growth to surface lattice disorder. By adjusting this threshold, it is possible to scalably restrict nanocrystal growth, filter out single nanowires and partition nanowire heterojunctions into segments with different orientations or modulate their electronic structures. This approach is expected to impact epitaxy of highly-mismatched semiconductors and lead to realization of ultrathin heterojunctions of 1D-2D materials.

5.
Nano Lett ; 15(12): 8360-4, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26599639

RESUMO

We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

6.
Nano Lett ; 15(3): 1535-9, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25658444

RESUMO

This study examines the role of the microstructure and optical properties of InGaN/GaN nanowire LED structures on Si(111) having different nanowire coverages. Cathodoluminescence (CL) measurements show that all samples exhibit broad emission around the intended energy, 1.95 eV (635 nm). While the absolute emission intensity is hard to compare for CL measurement, the bandgap emission (∼3.4 eV) coming from the GaN root is more pronounced as coverage of nanowires decreases, which has less coalescence formation. The width of the emission peak is likely due to variations in the morphology of the InGaN discs within the wires, as faceted layers with different thicknesses and quantum dots are observed by transmission electron microscopy. Nonepitaxial six-fold symmetric lateral branching, called "nanocrowns," emanate from stacking faults within the active regions. These features likely reduce optical emission as a result of grain boundaries between the nanocrown and nanowire.


Assuntos
Gálio/química , Índio/química , Iluminação/instrumentação , Nanofios/química , Nanofios/ultraestrutura , Semicondutores , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Tamanho da Partícula
7.
Nanoscale ; 6(21): 12814-21, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25225768

RESUMO

The horizontal growth of nanowires (NWs) using the surface-directed vapor-liquid-solid (SVLS) process has been demonstrated for a number of semiconductors and shows the unique ability of eliminating post-growth alignment steps. However, the epitaxial relationship between horizontal NWs and their underlying surface has not been well understood, as it becomes more convoluted in systems with closely matched lattice and crystal symmetry. We have unraveled one of the main mechanisms driving the lateral growth by investigating a highly-mismatched system comprising TiO2 anatase, a 4-fold symmetry crystal, grown on substrates with lower and higher symmetries including sapphire and GaN. Counter-intuitively, our results reveal that the lattice match with substrate exists along the width of the NWs. We demonstrate the first set of examples that rule out the requirement for having a lattice match along the NW growth axis, which is observed in the non-VLS growth of epitaxial quantum wires. Unlike wurtzite or zinc-blende crystals that have a preferred lattice orientation regardless of the substrate crystal structure, we observe new evidence on strict control of the substrate on shape, faceting and orientation of nanocrystals that could offer a selective route for tailoring TiO2 NW properties and functions at the ensemble level.

8.
Chem Soc Rev ; 42(1): 342-65, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23023109

RESUMO

On integrating one-dimensional (1D) nanocrystals (nanowires) to useful devices, in this review article, we provide a background on vapor-based growth processes and how they impact device integration strategies. Successful integration of nanowires to devices and their scalability simply rely on where and how nanowires are formed, how they are interfaced to other device components and how they function. In this direction, we will provide a discussion on developed growth strategies for lateral and standing growth of semiconductor nanostructures and assess their success in addressing current challenges of nanotechnology such as mass integration of nanowires, and the necessary accuracy in their positioning and alignment. In this regard, we highlight some of our recent work on formation of two-dimensional (2D)- and three-dimensional (3D)- nanowire and nanowall arrays and provide an overview of their structural and electro-optical properties. This will be followed by discussing potential applications of such hierarchical assemblies in light generation, photocatalysis and conversion of motion to electricity.

9.
ACS Nano ; 6(3): 1883-7, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22414146

RESUMO

Inorganic nanomembranes, analogues to graphene, are expected to impact a wide range of device concepts including thin-film or flexible platforms. Size-dependent properties and high surface area-two key characteristics of zero- (0D) and one-dimensional (1D) nanocrystals-are still present in most nanomembranes, rendering their use more probable in practical applications. These advantages make nanomembranes strong contenders for outpacing 0D and 1D nanocrystals, which are often difficult to integrate into commercial device technologies. This Perspective highlights important progress made by Wang et al. (doi: 10.1021/nn2050906) in large-scale fabrication of free-standing nanomembranes by using a solution-based technique, as reported in this issue of ACS Nano. The simplicity of this new approach and the elimination of typical delamination processes used in top-down nanomembrane fabrications are among the strengths of this technique. Areas for improvement along with an overview of other related work are also discussed.

10.
ACS Nano ; 4(10): 5877-86, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20843070

RESUMO

We report a surface-directed vapor-liquid-solid process for planar growth of one-dimensional heterojunctions of zinc oxide on single crystal gallium nitride (GaN) that enables their hierarchical assembly to light emitting diodes. An individual heterojunction is about 10 µm in length and 80 nm in width and is formed by planar growth of an n-type ZnO nanowire or nanowall on p-type GaN surface using Au catalyst. Our results show that a ZnO nanocrystal at its nucleation site has six possible growth directions that can be engineered and controlled using an intentional blockade of the nanocrystal growth in certain directions owing to similarities in crystal structures of ZnO and GaN. The ZnO nanowalls are formed when nanowires during their planar growth slowly grow in direction normal to the substrate via a self-catalytic process. The crystal structure of these heterojunctions is examined from two different crystallographic perspectives using high resolution transmission electron microscopy. Results indicate abrupt and epitaxial formation of n-p heterojunctions, which are difficult to achieve in thin film growth of these heterojunctions. The collective light emission of micrometer- to millimeter-size arrays of the heterojunctions is demonstrated via a simple design that is scalable to literally any platform size. This technique allows in situ growth and combinations of II-VI and III-V semiconductors and offers their easier integration to photonic and lab-on-chip platforms with applications in energy generation and light detection.

11.
ACS Nano ; 2(2): 368-76, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206639

RESUMO

ZnO nanowires (NWs) are grown on a bulk copper half-transmission electron microscopy grid by chemical vapor deposition in a high temperature tube furnace. Photoluminescence (PL) microscopy revealed band gap emission at 380 nm and a more intense visible emission around 520 nm due to defect states in these NWs. High-resolution transmission electron microscopy shows that the ZnO NWs are single crystalline with hexagonal structure. Auger electron spectroscopy (AES) and energy dispersive X-ray spectroscopy reveal that copper atoms are present along the length of the NW. AES also found that the surface of the NWs is oxygen rich. The surface concentration of zinc increases moving from the tip toward the base of the NW while the concentration of oxygen decreases. The copper in this system not only remains at the tip of the growing NW but also acts as a dopant along the length of the NW, leading to a decrease in the intensity of the band gap PL of these NWs.


Assuntos
Cobre/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Óxido de Zinco/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Photochem Photobiol ; 75(6): 591-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12081320

RESUMO

The photoluminescence (PL) of CdSe quantum dots (QD) in aqueous media has been studied in the presence of gold nanoparticles (NP) with different shapes. The steady state PL intensity of CdSe QD (1.5-2 nm in size) is quenched in the presence of gold NP. Picosecond bleach recovery and nanosecond time-resolved luminescence measurements show a faster bleach recovery and decrease in the lifetime of the emitting states of CdSe QD in the presence of quenchers. Surfactant-capped gold nanorods (NR) with aspect ratio of 3 and surfactant-capped and citrate-capped nanospheres (NS) of 12 nm diameter were used as quenchers in order to study the effect of shape and surface charge on the quenching rates. The Stern-Volmer kinetics model is used to examine the observed quenching behavior as a function of the quencher concentration. It was found that the quenching rate of NR is more than 1000 times stronger than that of NS with the same capping material. We also found that the quenching rate decreases as the length of the NR decreases, although the overlap between the CdSe emission and the NR absorption increases. This suggests that the quenching is a result of electron transfer rather than long-range (Forster-type) energy transfer processes. The quenching was attributed to the transfer of electron with energies below the Fermi level of gold to the trap holes of CdSe QD. The observed large difference between NR and NS quenching efficiencies was attributed to the presence of the [110] facets only in the NR, which have higher surface energy.


Assuntos
Cádmio/química , Luminescência , Selênio/química , Ouro , Cinética , Teoria Quântica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA