Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200694

RESUMO

Visible liquid inside food packages is perceived as unattractive to consumers, and may result in food waste-a significant factor that can compromise sustainability in food value chains. However, an absorber with overdimensioned capacity may cause alterations in texture and a dryer product, which in turn may affect consumers' satisfaction and repurchase. In this study we compared the effect of a number of liquid absorbent pads in combination with headspace gas composition (60% CO2/40% N2 and 75% O2/25% CO2) and gas-to-product volume ratio (g/p) on drip loss and quality of fresh chicken breast fillets. A significant increase in drip loss with an increasing number of liquid absorbent pads was documented. The increase was more pronounced in 60% CO2/40% N2 compared to 75% O2/25% CO2. By comparing packaging variants with a different number of liquid absorbent pads, a higher drip loss for all tested was found at g/p 1.8 compared to g/p 2.9. Total viable counts (TVC) were independent of whether there was free liquid in contact with the product, and TVC was independent of gas composition. Differentiation between the gas compositions was seen for specific bacterial analyses. While significant changes were observed using texture analysis, sensory evaluation of the chicken breast fillets did not show any negative effect in texture related attributes. This study demonstrates the importance of optimized control of meat drip loss, as product-adjusted liquid absorption may affect economy, food quality, and consumer satisfaction, as well as food waste.

2.
Compr Rev Food Sci Food Saf ; 20(2): 1333-1380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547765

RESUMO

Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improve biomaterial barrier and mechanical properties as well as to aid in improving overall shelf life for the packaging system by in-pack processing is elaborated on.


Assuntos
Embalagem de Alimentos , Eliminação de Resíduos , Alimentos , Qualidade dos Alimentos , Plásticos
3.
Nanomaterials (Basel) ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374563

RESUMO

There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010-2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.

4.
Compr Rev Food Sci Food Saf ; 17(1): 165-199, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33350066

RESUMO

The traditional role of food packaging is continuing to evolve in response to changing market needs. Current drivers such as consumer's demand for safer, "healthier," and higher-quality foods, ideally with a long shelf-life; the demand for convenient and transparent packaging, and the preference for more sustainable packaging materials, have led to the development of new packaging technologies, such as active packaging (AP). As defined in the European regulation (EC) No 450/2009, AP systems are designed to "deliberately incorporate components that would release or absorb substances into or from the packaged food or the environment surrounding the food." Active packaging materials are thereby "intended to extend the shelf-life or to maintain or improve the condition of packaged food." Although extensive research on AP technologies is being undertaken, many of these technologies have not yet been implemented successfully in commercial food packaging systems. Broad communication of their benefits in food product applications will facilitate the successful development and market introduction. In this review, an overview of AP technologies, such as antimicrobial, antioxidant or carbon dioxide-releasing systems, and systems absorbing oxygen, moisture or ethylene, is provided, and, in particular, scientific publications illustrating the benefits of such technologies for specific food products are reviewed. Furthermore, the challenges in applying such AP technologies to food systems and the anticipated direction of future developments are discussed. This review will provide food and packaging scientists with a thorough understanding of the benefits of AP technologies when applied to specific foods and hence can assist in accelerating commercial adoption.

5.
Vaccine ; 29(48): 8965-73, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21945255

RESUMO

An immune response to an antigen is more efficiently induced in combination with an adjuvant. Chitosan has due to documented immunostimulatory characteristics been proposed as an adjuvant candidate. However, a disadvantage with chitosan is its poor solubility at physiological pH. We have circumvented this obstacle by using a soluble type of chitosan (Viscosan), with a degree of deacetylation (DD) of 50% and a random distribution of acetyl groups. A hydrogel, ViscoGel, was made from Viscosan which was further mechanically processed into gel particles of predefined size. The first cells to infiltrate ViscoGel in mice, were identified mainly as neutrophils, detected already after 4 h. ViscoGel's impact on the immune response in mice together with a commercial vaccine against Haemophilus influenzae type b (Act-HIB) was then studied. Mixing Act-HIB with ViscoGel, induced significantly enhanced IgG1 and IgG2a titers in serum (p<0.05). We could reduce the antigen dose ten-fold in combination with ViscoGel and still obtain antibody titers similar to 2 µg Act-HIB administered alone. In addition, the Act-HIB specific cellular response was stronger in mice vaccinated together with ViscoGel (p<0.05). The cytokine response after vaccination with Act-Hib together with ViscoGel was of a mixed type. We found elevated levels of the Th1 associated cytokine INF-γ, the Th2-cytokine IL-4, the proinflammatory IL-6 and IL-17A, and the regulatory cytokine IL-10. Similar effects were seen when the adjuvant was administered either subcutaneously or intramuscularly. Taken together, using vaccination against H. influenzae type b as a model, we here show proof of concept for the novel vaccine adjuvant candidate, ViscoGel.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Quitosana/administração & dosagem , Vacinas Anti-Haemophilus/imunologia , Metilmetacrilatos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Células Cultivadas , Quitosana/imunologia , Citocinas/imunologia , Feminino , Vacinas Anti-Haemophilus/administração & dosagem , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Baço/citologia , Baço/imunologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA