Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 288: 127841, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153465

RESUMO

In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.


Assuntos
Alternaria , Bacillus , Metaboloma , Doenças das Plantas , Metabolismo Secundário , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus/metabolismo , Bacillus/genética , Bacillus/classificação , Bacillus/fisiologia , Alternaria/metabolismo , Alternaria/fisiologia , Agentes de Controle Biológico/metabolismo , Zea mays/microbiologia , Solanum lycopersicum/microbiologia , Metabolômica , Ascomicetos/metabolismo , Ascomicetos/fisiologia , Genoma Bacteriano
2.
Front Plant Sci ; 15: 1349357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379944

RESUMO

Agricultural productivity in the Great Lakes Countries of Central Africa, including Burundi, Rwanda, and the Democratic Republic of Congo, is affected by a wide range of diseases and pests which are mainly controlled by chemical pesticides. However, more than 30% of the pesticides used in the region are banned in European Union due to their high toxicity. Globally available safe and eco-friendly biological alternatives to chemicals are virtually non-existent in the region. Bacillus PGPR-based biocontrol products are the most dominant in the market and have proven their efficacy in controlling major plant diseases reported in the region. With this review, we present the current situation of disease and pest management and urge the need to utilize Bacillus-based control as a possible sustainable alternative to chemical pesticides. A repertoire of strains from the Bacillus subtilis group that have shown great potential to antagonize local pathogens is provided, and efforts to promote their use, as well as the search for indigenous and more adapted Bacillus strains to local agro-ecological conditions, should be undertaken to make sustainable agriculture a reality in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA