Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537569

RESUMO

Cancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency (POI), loss of fertility and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue. The success of this approach is largely determined by follicle density (FD) in the implanted ovarian tissue, which is analyzed manually from histologic sections and necessitates specialized, time-consuming labor. To address this limitation, we developed a fully automated method to quantify FD that does not require additional coding. We first analyzed ovarian tissue from 12 human donors between 16 to 37 years old using semi-automated image processing with manual follicle annotation and then trained artificial intelligence program based on follicle identification and object classification. One operator manually analyzed 102 whole slide images (WSIs) from serial histologic sections. Of those, 77 images were assessed by a second manual operator, followed with an automated method utilizing artificial intelligence (AI). Of the 1181 follicles the control operator counted, the comparison operator counted 1178, and the AI counted 927 follicles with 80% of those being correctly identified as follicles. The three-stage AI pipeline finished 33% faster than manual annotation. Collectively, this report supports the use of artificial intelligence and automation to select tissue donors and grafts with the greatest FD to ensure graft longevity for POI treatment.

2.
STAR Protoc ; 4(3): 102367, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339049

RESUMO

Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.


Assuntos
Crânio , Animais , Camundongos , Fluxo de Trabalho
3.
Biol Reprod ; 108(5): 802-813, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36790125

RESUMO

Some transmasculine individuals may be interested in pausing gender-affirming testosterone therapy and carrying a pregnancy. The ovarian impact of taking and pausing testosterone is not completely understood. The objective of this study was to utilize a mouse model mimicking transmasculine testosterone therapy to characterize the ovarian dynamics following testosterone cessation. We injected postpubertal 9-10-week-old female C57BL/6N mice once weekly with 0.9 mg of testosterone enanthate or a vehicle control for 6 weeks. All testosterone-treated mice stopped cycling and demonstrated persistent diestrus within 1 week of starting testosterone, while control mice cycled regularly. After 6 weeks of testosterone therapy, one group of testosterone-treated mice and age-matched vehicle-treated diestrus controls were sacrificed. Another group of testosterone-treated mice were maintained after stopping testosterone therapy and were sacrificed in diestrus four cycles after the resumption of cyclicity along with age-matched vehicle-treated controls. Ovarian histological analysis revealed stromal changes with clusters of large round cells in the post testosterone group as compared to both age-matched controls and mice at 6 weeks on testosterone. These clusters exhibited periodic acid-Schiff staining, which has been previously reported in multinucleated macrophages in aging mouse ovaries. Notably, many of these cells also demonstrated positive staining for macrophage markers CD68 and CD11b. Ovarian ribonucleic acid-sequencing found upregulation of immune pathways post testosterone as compared to age-matched controls and ovaries at 6 weeks on testosterone. Although functional significance remains unknown, further attention to the ovarian stroma may be relevant for transmasculine people interested in pausing testosterone to carry a pregnancy.


Assuntos
Ovário , Pessoas Transgênero , Gravidez , Feminino , Camundongos , Animais , Humanos , Ovário/metabolismo , Camundongos Endogâmicos C57BL , Testosterona/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos
4.
Hum Reprod ; 38(2): 256-265, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484619

RESUMO

STUDY QUESTION: Can mice serve as a translational model to examine the reproductive consequences of pubertal suppression with GnRH agonist (GnRHa) followed by testosterone (T) administration, a typical therapy in peripubertal transmasculine youth? SUMMARY ANSWER: An implanted depot with 3.6 mg of GnRHa followed by T enanthate at 0.45 mg weekly can be used in peripubertal female mice for investigating the impact of gender-affirming hormone therapy in transmasculine youth. WHAT IS KNOWN ALREADY: There is limited knowledge available in transgender medicine to provide evidence-based fertility care, with the current guidelines being based on the assumption of fertility loss. We recently successfully developed a mouse model to investigate the reproductive consequences of T therapy given to transgender men. On the other hand, to our knowledge, there is no mouse model to assess the reproductive outcomes in peripubertal transmasculine youth. STUDY DESIGN, SIZE, DURATION: A total of 80 C57BL/6N female mice were used in this study, with n = 7 mice in each experimental group. PARTICIPANTS/MATERIALS, SETTING, METHODS: We first assessed the effectiveness of GnRHa in arresting pubertal development in the female mice. In this experiment, 26-day-old female mice were subcutaneously implanted with a GnRHa (3.6 mg) depot. Controls underwent a sham surgery. Animals were euthanized at 3, 9, 21 and 28 days after the day of surgery. In the second experiment, we induced a transmasculine youth mouse model. C57BL/6N female mice were subcutaneously implanted with a 3.6 mg GnRHa depot on postnatal day 26 for 21 days and this was followed by weekly injections of 0.45 mg T enanthate for 6 weeks. The control for the GnRH treatment was sham surgery and the control for T treatment was sesame oil vehicle injections. Animals were sacrificed 0.5 weeks after the last injection. The data collected included the day of the vaginal opening and first estrus, daily vaginal cytology, weekly and terminal reproductive hormones levels, body/organ weights, ovarian follicular distribution and corpora lutea (CL) counts. MAIN RESULTS AND THE ROLE OF CHANCE: GnRHa implanted animals remained in persistent diestrus and had reduced levels of FSH (P = 0.0013), LH (P = 0.0082) and estradiol (P = 0.0155), decreased uterine (P < 0.0001) and ovarian weights (P = 0.0002), and a lack of CL at 21 days after GnRHa implantation. T-only and GnRHa+T-treated animals were acyclic throughout the treatment period, had sustained elevated levels of T, suppressed LH levels (P < 0.0001), and an absence of CL compared to controls (P < 0.0001). Paired ovarian weights were reduced in the T-only and GnRHa+T groups compared with the control and GnRHa-only groups. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although it is an appropriate tool to provide relevant findings, precaution is needed to extrapolate mouse model results to mirror human reproductive physiology. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this study describes the first mouse model mimicking gender-affirming hormone therapy in peripubertal transmasculine youth. This model provides a tool for researchers studying the effects of GnRHa-T therapy on other aspects of reproduction, other organ systems and transgenerational effects. The model is supported by GnRHa suppressing puberty and maintaining acyclicity during T treatment, lower LH levels and absence of CL. The results also suggest GnRHa+T therapy in peripubertal female mice does not affect ovarian reserve, since the number of primordial follicles was not affected by treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Michigan Institute for Clinical and Health Research grants KL2 TR 002241 and UL1 TR 002240 (C.D.C.); National Institutes of Health grants F30-HD100163 and T32-HD079342 (H.M.K.); University of Michigan Office of Research funding U058227 (A.S.); American Society for Reproductive Medicine/Society for Reproductive Endocrinology and Infertility grant (M.B.M.); and National Institutes of Health R01-HD098233 (M.B.M.). The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core Facility was supported by the Eunice Kennedy Shriver NICHD/NIH grants P50-HD028934 and R24-HD102061. The authors declare that they have no competing interests.


Assuntos
Heptanoatos , Testosterona , Masculino , Animais , Camundongos , Humanos , Feminino , Adolescente , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina
5.
F S Sci ; 2(2): 116-123, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-35559746

RESUMO

OBJECTIVE: To establish if the cessation of testosterone (T) therapy reverses T-induced acyclicity in a transgender mouse model that allows for well-defined T cessation timing. DESIGN: Experimental laboratory study using a mouse model. SETTING: University-based basic science research laboratory. ANIMALS: A total of 10 C57BL/6NHsd female mice were used in this study. INTERVENTION(S): Postpubertal C57BL/6NHsd female mice were subcutaneously implanted with T enanthate (n = 5 mice) or placebo (n = 5 mice) pellets. Pellets were surgically removed after 6 weeks to ensure T cessation, after which the mice were followed for four estrous cycles after the resumption of cyclicity. MAIN OUTCOME MEASURE(S): Primary outcomes included daily vaginal cytology and weekly T levels before, during, and after T enanthate or placebo pellet implantation and removal. Secondary outcomes included ovarian follicle distribution and corpora lutea numbers, body metrics, and terminal diestrus hormone levels. RESULT(S): T-treated mice (100%) resumed cycling within one week of T pellet removal after six weeks of T therapy. T levels were significantly elevated during T therapy and decreased to control levels after surgical pellet removal. No detectable differences were observed in the follicle count, corpora lutea formation, diestrus hormone levels, or body metrics after four estrous cycles, with the exception of persistent increased clitoral area between T-treated mice and controls. One T-treated mouse was sacrificed early due to vaginal prolapse and not included in subsequent analyses. CONCLUSION(S): Our results demonstrated a close temporal relationship between estrous cycle return and T levels dropping to control levels following T pellet removal. The return of regular cyclic ovulatory function is also supported by the formation of corpora lutea and the lack of detectable differences in key reproductive parameters as compared to controls four cycles after T cessation. These results may be relevant to understanding the reversibility of T-induced amenorrhea and possible anovulation in transgender men interested in pausing T to pursue pregnancy or oocyte donation. Results may be limited by the duration of T treatment, lack of functional testing, and physiological differences between mice and humans.


Assuntos
Testosterona , Pessoas Transgênero , Animais , Modelos Animais de Doenças , Feminino , Heptanoatos , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano , Gravidez , Testosterona/farmacologia
6.
Biomaterials ; 230: 119634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776019

RESUMO

There is a critical need for biomaterials that support robust neovascularization for a wide-range of clinical applications. Here we report how cells alter tissue-level mechanical properties during capillary morphogenesis using a model of endothelial-stromal cell co-culture within poly(ethylene glycol) (PEG) based hydrogels. After a week of culture, we observed substantial stiffening in hydrogels with very soft initial properties. Endothelial cells or stromal cells alone, however, failed to induce hydrogel stiffening. This stiffening tightly correlated with degree of vessel formation but not with hydrogel compaction or cellular proliferation. Despite a lack of fibrillar architecture within the PEG hydrogels, cell-generated contractile forces were essential for hydrogel stiffening. Upregulation of alpha smooth muscle actin and collagen-1 was also correlated with enhanced vessel formation and hydrogel stiffening. Blocking cell-mediated hydrogel degradation abolished stiffening, demonstrating that matrix metalloproteinase (MMP)-mediated remodeling is required for stiffening to occur. These results highlight the dynamic reciprocity between cells and their mechanical microenvironment during capillary morphogenesis and provide important insights for the rational design of materials for vasculogenic applications.


Assuntos
Células Endoteliais , Hidrogéis , Materiais Biocompatíveis , Morfogênese , Polietilenoglicóis
7.
J Biomed Mater Res B Appl Biomater ; 107(8): 2507-2516, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30784190

RESUMO

Extracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the relative contributions of MMP- and plasmin-mediated ECM remodeling to vessel formation in a 3D-model of capillary self-assembly analogous to vasculogenesis. We first demonstrated a role for both MMP- and plasmin-mediated mechanisms of ECM remodeling in an endothelial-fibroblast co-culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and plasmin. When this co-culture model was employed in engineered PEG hydrogels with selective protease sensitivity, we observed robust capillary morphogenesis only in MMP-sensitive matrices. Fibroblast spreading in plasmin-selective hydrogels confirmed this difference was due to protease preference by endothelial cells, not due to limitations of the matrix itself. In hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, capillary morphogenesis was unchanged. These findings highlight the critical importance of MMP-mediated degradation during vasculogenesis and provide strong evidence to justify the preferential selection of MMP-degradable peptide crosslinkers in synthetic hydrogels used to study vascular morphogenesis and promote vascularization. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2507-2516, 2019.


Assuntos
Capilares/crescimento & desenvolvimento , Colagenases/metabolismo , Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Fibroblastos/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hidrogéis/química , Neovascularização Fisiológica , Capilares/enzimologia , Técnicas de Cocultura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA