Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 6(3): 890-904, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33073063

RESUMO

Biopolymer based hydrogels are characteristic of their biocompatibility and capability of mimicking extracellular matrix structure to support cellular behavior. However, these hydrogels suffer from low mechanical properties, uncontrolled degradation, and insufficient osteogenic activity, which limits their applications in bone regeneration. In this study, we developed hybrid gelatin (Gel)/oxidized chondroitin sulfate (OCS) hydrogels that incorporated mesoporous bioactive glass nanoparticles (MBGNs) as bioactive fillers for bone regeneration. Gel-OCS hydrogels could be self-crosslinked in situ under physiological conditions in the presence of borax. The incorporation of MBGNs enhanced the crosslinking and accelerated the gelation. The gelation time decreased with increasing the concentration of MBGNs added. Incorporation of MBGNs in the hydrogels significantly improved the mechanical properties in terms of enhanced storage modulus and compressive strength. The injectability of the hydrogels was not significantly affected by the MBGN incorporation. Also, the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro and rat cranial defect restoration in vivo were significantly promoted by the hydrogels in the presence of MBGNs. The hybrid Gel-OCS/MBGN hydrogels show promising potential as injectable biomaterials or scaffolds for bone regeneration/repair applications given their tunable degradation and gelation behavior as well as favorable mechanical behavior and osteogenic activities.

2.
J Mater Sci Mater Med ; 30(10): 111, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31583537

RESUMO

OBJECTIVE: The fabrication of bioactive coatings on metallic implants to enhance osseointegration has become a topic of general interest in orthopedics and dentistry. Hydroxyapatite (HA) coating has been shown to induce bone formation and promote bone-implant integration. Unfortunately, poor mechanical performance has hindered this from becoming a favorable coating material. The majority of present studies have focused in incorporating different elements into HA coatings to improve mechanical properties. In recent years, tantalum (Ta) has received increasing attention due to its excellent biocompatibility and corrosion resistance. The aim of on the present study was to investigate the fabrication and biological performance of Ta-incorporated HA coatings. METHODS: Ta-incorporated HA coatings were fabricated using the plasma spray technique on a titanium substrate, and the surface characteristics and mechanical properties were examined. In addition, the effects of Ta-incorporated HA coatings on the biological behavior of mesenchymal stem cells (BMSCs) were investigated. RESULTS: Ta-incorporated HA coatings with microporous structure had higher roughness and wettability. In addition, the bonding strength of Ta/HA coatings with the substrate was substantially superior to HA coatings. Furthermore, Ta-incorporated HA coatings not only facilitated initial cell adhesion and faster proliferation, but also promoted the osteogenic differentiation of BMSCs. CONCLUSION: These results indicate that the incorporation of Ta could improve mechanical performance and increase the osteogenic activity of HA coatings. The Ta-incorporated HA coating fabricated by plasma spraying is expected to be a promising bio-coating material for metallic implants.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Osteogênese , Tantálio/química , Titânio/química , Animais , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Corrosão , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Metais , Osseointegração , Porosidade , Pós , Próteses e Implantes , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Propriedades de Superfície
3.
Biopolymers ; 110(12): e23328, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31454076

RESUMO

Blood vessels play an important role in bone defect repair and growth, and a critical challenge of bone defect repair is the promotion of blood vessel formation. Most of the current methods promote vascularization by adding specific growth factors, which are costly and easy to inactivate. In this study, we developed a covalently cross-linked aminated bioactive glass nanoparticle-chondroitin sulfate methacrylate (ABGN-CSMA) organic-inorganic composite hydrogel with angiogenic properties. The amino groups of the ABGNs form covalent bonds with the carboxyl groups on CSMA. Surface amination modification of BGNs not only improved the dispersion of BGNs in CSMA but also significantly improved the mechanical properties of the composite hydrogel. The largest storage modulus (1200 Pa), the largest loss modulus (560 Pa) and the strongest resistance to deformation of the hydrogel are seen at 10% concentration of ABGNs. Simultaneously, the local pH stability and sustained ion release of the composite hydrogel are conducive to cell adhesion, proliferation, and angiogenesis. This work provides evidence for the development of covalently cross-linked organic-inorganic composite hydrogels with angiogenic properties.


Assuntos
Sulfatos de Condroitina , Materiais Revestidos Biocompatíveis , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hidrogéis , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Vidro , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Propriedades de Superfície
4.
J Nanosci Nanotechnol ; 15(5): 3893-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26505020

RESUMO

Total hip and knee arthroplasty have being successfully performed in world-wide in recent years. However, poor osseointegration between implant (polish surface) and host bone tissue is one of the main causes for aseptic loosening in Ti-based materials and result in failure. Fabricating nanotopography is a promising method to improve cell behaviors and promote osseointegration. Ti nanorods array of vary lengths have been produced via selective corrosion of Ti substrate using electrochemical anodization technique on titanium surface. In this study, we investigated the murine bone mesenchymal stem cell (MSC) behaviors in response to these different lengths of nanorods. The result showed that the nanorod of 100 nm length increased MSCs adhesion and proliferation. Increased elongation of cytoskeleton actin was also observed on 100 nm height, which resulted in substantially up-regulation of alkaline phosphatase (ALP) activity, suggesting greater bone-forming ability than control Ti. The Ti nanorods of 100 nm length may be a promising implant surface to improve the osseointegration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos/química , Titânio/química , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Camundongos
5.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 48(1): 41-4, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23534521

RESUMO

OBJECTIVE: To explore the effect of changes of processing time on the surface properties of titanium coating formed by micro-arc oxidation (MAO). METHODS: Forty-four disc-shaped pure titanium specimens with 10 mm diameter and 1 mm thickness were equally divided into 4 groups and processed by MAO technique in electrolytes containing 0.2 mol/L calcium acetate (CA) and 0.02 mol/L ß-glycerol phosphate disodium salt pentahydrate (ß-GP). The processing time were set at 1 min, 5 min, 10 min and 15 min respectively. The topograph of the MAO film surface and the film-substrate interface was observed by a scanning electron microscopy (SEM), and the composition was analyzed by an energy dispersive spectroscope (EDS) incorporated in the SEM. The phase and the microstructure of the film were analyzed by X-ray diffraction (XRD). The roughness of the film was measured using a roughness tester. The surface static contact angle was detected by a contact angle measurement instrument and the surface energy was calculated accordingly. RESULTS: With the increase of processing time from 1 min to 15 min, the pore size increased from (1.30 ± 0.07) µm to (1.55 ± 0.09) µm, and film thickness increased from (10.2 ± 1.1) µm to (20.9 ± 2.9) µm. The content of the Ca in the film increased accordingly, and Ca/P increased from 1.99 to 2.45, and the surface energy increased from 24.62 mJ/m(2) to 39.49 mJ/m(2). Meanwhile, the XRD pattern indicated that rutile increased but anatase and titanium decreased gradually. At the time of 15 min, part of the MAO film peeled off. CONCLUSIONS: Processing time has impact on the thickness, surface topography, crystal component and surface energy of titanium MAO coating. MAO film treated for 5 - 10 min demonstrated favorable surface properties.


Assuntos
Implantes Dentários , Materiais Dentários/química , Teste de Materiais , Titânio/química , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA