Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(8): e14547, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160430

RESUMO

Root caries is a subtype of dental caries that predominantly impacts older adults. The occurrence and progression of root caries are associated with the homeostasis of dental plaque biofilm, and microbial synergistic and antagonistic interactions in the biofilm play a significant role in maintaining the oral microecological balance. The objective of the current study was to investigate the role of Veillonella parvula in the microbial interactions and the pathogenesis of root caries. The analysis of clinical samples from patients with/without root caries revealed that Veillonella and V. parvula were abundant in the saliva of patients with root caries. More importantly, a significantly increased colonization of V. parvula was observed in root carious lesions. Further in vitro biofilm and animal study showed that V. parvula colonization increased the abundance and virulence of Streptococcus mutans and Candida albicans, leading to the formation of a polymicrobial biofilm with enhanced anti-stress capacity and cariogenicity, consequently exacerbating the severity of carious lesions. Our results indicate the critical role of V. parvula infection in the occurrence of root caries, providing a new insight for the etiological investigation and prevention of root caries.


Assuntos
Biofilmes , Candida albicans , Interações Microbianas , Cárie Radicular , Streptococcus mutans , Veillonella , Streptococcus mutans/fisiologia , Streptococcus mutans/patogenicidade , Streptococcus mutans/genética , Candida albicans/patogenicidade , Candida albicans/fisiologia , Humanos , Biofilmes/crescimento & desenvolvimento , Cárie Radicular/microbiologia , Animais , Veillonella/genética , Veillonella/fisiologia , Saliva/microbiologia , Modelos Animais de Doenças , Masculino , Feminino
2.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063217

RESUMO

Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.


Assuntos
Histidina , Humanos , Fosforilação , Histidina/metabolismo , Histidina/análogos & derivados , Animais , Monoéster Fosfórico Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Quinases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Histidina Quinase/metabolismo , Histidina Quinase/genética
3.
Neurochem Res ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002091

RESUMO

Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38776207

RESUMO

In convolutional neural networks (CNNs), the convolutions are conventionally performed using a square kernel with a fixed N × N receptive field (RF). However, what matters most to the network is the effective receptive field (ERF), which indicates the extent to which input pixels contribute to an output pixel. Inspired by the property that ERFs typically exhibit a Gaussian distribution, we propose a Gaussian Mask convolutional kernel (GMConv). Specifically, GMConv utilizes the Gaussian function to generate a concentric symmetry mask that is placed over the kernel to refine the RF. We analyze the RFs of CNN kernels in different CNN layers and evaluate our approach through extensive experiments on image classification and object detection tasks. Over several tasks and standard base models, our approach compares favorably against the standard convolution. For instance, using GMConv for AlexNet and ResNet-50, the top-1 accuracy on ImageNet classification is boosted by 0.98% and 0.85% , respectively.

5.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712081

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer that lacks an effective targeted therapy. To identify new therapeutic targets, we investigated the phosphohistidine phosphatase, LHPP, which has been implicated in the development of several types of cancer. However, the full significance of LHPP in cancer progression remains unclear due to our limited understanding of its molecular mechanism. We found that levels of the LHPP phosphohistidine phosphatase were significantly increased in human breast cancer patients compared to normal adjacent tissues, with the highest levels in the TNBC subtype. When LHPP was knocked out in the MDA-MB-231 human TNBC cell line, cell proliferation, wound healing capacity, and invasion were significantly reduced. However, LHPP knockout in TNBC cells did not affect the phosphohistidine protein levels. Interestingly, LHPP knockout in MDA-MB-231 cells delayed tumor growth and reduced metastasis when orthotopically transplanted into mouse mammary glands. To investigate LHPP's role in breast cancer progression, we used next-generation sequencing and proximity-labeling proteomics, and found that LHPP regulates gene expression in chemokine-mediated signaling and actin cytoskeleton organization. Depletion of LHPP reduced the presence of tumor-infiltrating macrophages in mouse xenografts. Our results uncover a new tumor promoter role for LHPP phosphohistidine phosphatase in TNBC and suggest that targeting LHPP phosphatase could be a potential therapeutic strategy for TNBC.

6.
JGH Open ; 8(4): e13055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628386

RESUMO

Background and Aim: The microsurface structure reflects the degree of damage to the glands, which is related to the invasion depth of early gastric cancer. To evaluate the diagnostic value of quantitative microsurface structure analysis for estimating the invasion depth of early gastric cancer. Methods: White-light imaging and narrow-band imaging (NBI) endoscopy were used to visualize the lesions of the included patients. The area ratio and depth-predicting score (DPS) of each patient were calculated; meanwhile, each lesion was examined by endoscopic ultrasonography (EUS). Results: Ninety-three patients were included between 2016 and 2019. Microsurface structure is related to the histological differentiation and progression of early gastric cancer. The receiver operating characteristic curve showed that when an area ratio of 80.3% was used as a cut-off value for distinguishing mucosal (M) and submucosal (SM) type 0-II gastric cancers, the sensitivity, specificity, and accuracy were 82.9%, 80.2%, and 91.6%, respectively. The accuracies for distinguishing M/SM differentiated and undifferentiated early gastric cancers were 87.4% and 84.8%, respectively. The accuracy of EUS for distinguishing M/SM early gastric cancer was 74.9%. DPS can only distinguish M-SM1 (SM infiltration <500 µm)/SM (SM infiltration ≥500 µm) with an accuracy of 83.8%. The accuracy of using area ratio for distinguishing 0-II early gastric cancers was better than those of using DPS and EUS (P < 0.05). Conclusion: Quantitative analysis of microsurface structure can be performed to assess M/SM type 0-II gastric cancer and is expected to be effective for judging the invasion depth of gastric cancer.

7.
J Oral Microbiol ; 16(1): 2292539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405599

RESUMO

Oral microecological balance is closely associated with the development of dental caries. Oxidative stress is one of the important factors regulating the composition and structure of the oral microbial community. Streptococcus mutans is linked to the occurrence and development of dental caries. The ability of S. mutans to withstand oxidative stress affects its survival competitiveness in biofilms. The oxidative stress regulatory mechanisms of S. mutans include synthesis of reductase, regulation of metal ions uptake, regulator PerR, transcription regulator Spx, extracellular uptake of glutathione, and other related signal transduction systems. Here, we provide an overview of how S. mutans adapts to oxidative stress and its influence on oral microecology, which may offer novel options to investigate the cariogenic mechanisms of S. mutans in the oral microenvironment, and new targets for the ecological prevention and treatment of dental caries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA