RESUMO
The effects of vegetable planting on soil loss and nutrient loss, runoff, soil erosion, and nitrogen (ammonium nitrogen and nitrate nitrogen) losses under individual rainfalls of fruit- and leaf-vegetable fields between April to October in 2021 were observed using in-situ observation testing. The results showed that: â the runoff, erosion, and nitrogen loss of the fruit-vegetable pattern (eggplant-chili) were 1.27-2.00 times those under the leaf-vegetable pattern (leaf lettuce-sweet potato leaves), especially under the second season vegetable period. Those losses under the second season vegetable accounted for 50.86%-68.83% of the total losses under different vegetable patterns, which were approximately 1.03-2.04 times those under the first season vegetable. The runoff, erosion, and nutrient loss of vegetable fields under different treatments were both concentrated in June and July, and the nitrogen loss was mainly in the form of nitrate nitrogen with surface runoff. â¡ The runoff, erosion, and nutrient losses under individual rainfalls of vegetable fields under different treatments fluctuated among the vegetable growing season, and the losses were mainly concentrated in several typical rainfall events. On the whole, the loss and concentration of nitrate and ammonium nitrogen in runoff and erosion sediment of vegetables in the first season were lower than those in the second season. The runoff, erosion, and loss of ammonium nitrogen and nitrate nitrogen of fruit-vegetable were higher than those of leaf-vegetable. ⢠Both rainfall amount and maximum 30 min rainfall intensity had significantly positive effects on runoff, soil loss, and nitrogen loss. Runoff, erosion, and nutrient losses under different vegetable patterns were mainly generated by moderate rain, heavy rain, and heavy rainstorms, which accounted for 29.58%-46.68%, 24.54%-36.79%, and 24.01%-39.13% of the total losses, respectively. The results also showed that soil erosion and nutrient losses generated by different rainfall grades were obviously different for the fruit- and leaf-vegetable treatments. The results indicated that the vegetable pattern had significant impacts on soil loss and nutrient loss, and the leaf-vegetable pattern could reduce soil erosion and nutrient loss compared with the fruit-vegetable pattern. Furthermore, for different vegetable patterns and vegetable growing seasons, the effects of rainfall on soil loss and nutrient loss were quite different. The results of this study were helpful in clarifying the soil erosion and nutrient loss characteristics of vegetable fields in South China.