Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 45(4)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38599223

RESUMO

Objective. Myocardial infarction (MI) is a serious cardiovascular disease that can cause irreversible damage to the heart, making early identification and treatment crucial. However, automatic MI detection and localization from an electrocardiogram (ECG) remain challenging. In this study, we propose two models, MFB-SENET and MFB-DMIL, for MI detection and localization, respectively.Approach. The MFB-SENET model is designed to detect MI, while the MFB-DMIL model is designed to localize MI. The MI localization model employs a specialized attention mechanism to integrate multi-instance learning with domain knowledge. This approach incorporates handcrafted features and introduces a new loss function called lead-loss, to improve MI localization. Grad-CAM is employed to visualize the decision-making process.Main Results.The proposed method was evaluated on the PTB and PTB-XL databases. Under the inter-patient scheme, the accuracy of MI detection and localization on the PTB database reached 93.88% and 67.17%, respectively. The accuracy of MI detection and localization on the PTB-XL database were 94.89% and 85.83%, respectively.Significance. Our method achieved comparable or better performance than other state-of-the-art algorithms. The proposed method combined deep learning and medical domain knowledge, demonstrates effectiveness and reliability, holding promise as an efficient MI diagnostic tool to assist physicians in formulating accurate diagnoses.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Infarto do Miocárdio/diagnóstico , Humanos , Processamento de Sinais Assistido por Computador , Aprendizado de Máquina , Algoritmos , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA