Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Nucl Med ; 65(4): 635-642, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453361

RESUMO

The normalized distances from the hot spot of radiotracer uptake (SUVmax) to the tumor centroid (NHOC) and to the tumor perimeter (NHOP) have recently been suggested as novel PET features reflecting tumor aggressiveness. These biomarkers characterizing the shift of SUVmax toward the lesion edge during tumor progression have been shown to be prognostic factors in breast and non-small cell lung cancer (NSCLC) patients. We assessed the impact of imaging parameters on NHOC and NHOP, their complementarity to conventional PET features, and their prognostic value for advanced-NSCLC patients. Methods: This retrospective study investigated baseline [18F]FDG PET scans: cohort 1 included 99 NSCLC patients with no treatment-related inclusion criteria (robustness study); cohort 2 included 244 NSCLC patients (survival analysis) treated with targeted therapy (93), immunotherapy (63), or immunochemotherapy (88). Although 98% of patients had metastases, radiomic features including SUVs were extracted from the primary tumor only. NHOCs and NHOPs were computed using 2 approaches: the normalized distance from the localization of SUVmax or SUVpeak to the tumor centroid or perimeter. Bland-Altman analyses were performed to investigate the impact of both spatial resolution (comparing PET images with and without gaussian postfiltering) and image sampling (comparing 2 voxel sizes) on feature values. The correlation of NHOCs and NHOPs with other features was studied using Spearman correlation coefficients (r). The ability of NHOCs and NHOPs to predict overall survival (OS) was estimated using the Kaplan-Meier method. Results: In cohort 1, NHOC and NHOP features were more robust to image filtering and to resampling than were SUVs. The correlations were weak between NHOCs and NHOPs (r ≤ 0.45) and between NHOCs or NHOPs and any other radiomic features (r ≤ 0.60). In cohort 2, the patients with short OS demonstrated higher NHOCs and lower NHOPs than those with long OS. NHOCs significantly distinguished 2 survival profiles in patients treated with immunotherapy (log-rank test, P < 0.01), whereas NHOPs stratified patients regarding OS in the targeted therapy (P = 0.02) and immunotherapy (P < 0.01) subcohorts. Conclusion: Our findings suggest that even in advanced NSCLC patients, NHOC and NHOP features pertaining to the primary tumor have prognostic potential. Moreover, these features appeared to be robust with respect to imaging protocol parameters and complementary to other radiomic features and are now available in LIFEx software to be independently tested by others.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Prognóstico , Estudos Retrospectivos , Biomarcadores , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
2.
Radiology ; 310(2): e231319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319168

RESUMO

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Assuntos
Processamento de Imagem Assistida por Computador , Radiômica , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Imagem Multimodal
3.
Int J Radiat Oncol Biol Phys ; 115(5): 1047-1060, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423741

RESUMO

PURPOSE: The delineation of target volumes and organs at risk is the main source of uncertainty in radiation therapy. Numerous interobserver variability (IOV) studies have been conducted, often with unclear methodology and nonstandardized reporting. We aimed to identify the parameters chosen in conducting delineation IOV studies and assess their performances and limits. METHODS AND MATERIALS: We conducted a systematic literature review to highlight major points of heterogeneity and missing data in IOV studies published between 2018 and 2021. For the main used metrics, we did in silico analyses to assess their limits in specific clinical situations. RESULTS: All disease sites were represented in the 66 studies examined. Organs at risk were studied independently of tumor site in 29% of reviewed IOV studies. In 65% of studies, statistical analyses were performed. No gold standard (GS; ie, reference) was defined in 36% of studies. A single expert was considered as the GS in 21% of studies, without testing intraobserver variability. All studies reported both absolute and relative indices, including the Dice similarity coefficient (DSC) in 68% and the Hausdorff distance (HD) in 42%. Limitations were shown in silico for small structures when using the DSC and dependence on irregular shapes when using the HD. Variations in DSC values were large between studies, and their thresholds were inconsistent. Most studies (51%) included 1 to 10 cases. The median number of observers or experts was 7 (range, 2-35). The intraclass correlation coefficient was reported in only 9% of cases. Investigating the feasibility of studying IOV in delineation, a minimum of 8 observers with 3 cases, or 11 observers with 2 cases, was required to demonstrate moderate reproducibility. CONCLUSIONS: Implementation of future IOV studies would benefit from a more standardized methodology: clear definitions of the gold standard and metrics and a justification of the tradeoffs made in the choice of the number of observers and number of delineated cases should be provided.


Assuntos
Radioterapia (Especialidade) , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Eur J Nucl Med Mol Imaging ; 50(2): 559-571, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282298

RESUMO

PURPOSE: To evaluate whether radiomics from [18F]-FDG PET and/or MRI before re-irradiation (reRT) of recurrent head and neck cancer (HNC) could predict the occurrence and the location "in-field" or "outside" of a second locoregional recurrence (LR). METHODS: Among the 55 patients re-irradiated at curative intend for HNC from 2012 to 2019, 48 had an MRI and/or PET before the start of the reRT. Thirty-nine radiomic features (RF) were extracted from the re-irradiated GTV (rGTV) using LIFEx software. Student t tests and Spearman correlation coefficient were used to select the RF that best separate patients who recurred from those who did not, and "in-field" from "outside" recurrences. Principal component analysis involving these features only was used to create a prediction model. Leave-one-out cross-validation was performed to evaluate the models. RESULTS: After a median follow-up of 17 months, 40/55 patients had developed a second LR, including 18 "in-field" and 22 "outside" recurrences. From pre-reRT MRI, a model based on three RF (GLSZM_SZHGLE, GLSZM_LGLZE, and skewness) predicted whether patients would recur with a balanced accuracy (BA) of 83.5%. Another model from pre-reRT MRI based on three other RF (GLSZM_ LZHGE, NGLDM_Busyness, and GLZLM_SZE) predicted whether patients would recur "in-field" or "outside" with a BA of 78.5%. From pre-reRT PET, a model based on four RF (Kurtosis, SUVbwmin, GLCM_Correlation, and GLCM_Contrast) predicted the LR location with a BA of 84.5%. CONCLUSION: RF characterizing tumor heterogeneity extracted from pre-reRT PET and MRI predicted whether patients would recur, and whether they would recur "in-field" or "outside".


Assuntos
Neoplasias de Cabeça e Pescoço , Reirradiação , Humanos , Fluordesoxiglucose F18 , Recidiva Local de Neoplasia/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento por Ressonância Magnética
5.
Hematol Oncol ; 40(4): 645-657, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35606338

RESUMO

We evaluated the prognostic role of the largest distance between two lesions (Dmax), defined by positron emission tomography (PET) in a retrospective cohort of newly diagnosed classical Hodgkin Lymphoma (cHL) patients. We also explored the molecular bases underlying Dmax through a gene expression analysis of diagnostic biopsies. We included patients diagnosed with cHL from 2007 to 2020, initially treated with ABVD, with available baseline PET for review, and with at least two FDG avid lesions. Patients with available RNA from diagnostic biopsy were eligible for gene expression analysis. Dmax was deduced from the three-dimensional coordinates of the baseline metabolic tumor volume (MTV) and its effect on progression free survival (PFS) was evaluated. Gene expression profiles were correlated with Dmax and analyzed using CIBERSORTx algorithm to perform deconvolution. The study was conducted on 155 eligible cHL patients. Using its median value of 20 cm, Dmax was the only variable independently associated with PFS (HR = 2.70, 95% CI 1.1-6.63, pValue = 0.03) in multivariate analysis of PFS for all patients and for those with early complete metabolic response (iPET-). Among patients with iPET-low Dmax was associated with a 4-year PFS of 90% (95% CI 82.0-98.9) significantly better compared to high Dmax (4-year PFS 72.4%, 95% CI 61.9-84.6). From the analysis of gene expression profiles differences in Dmax were mostly associated with variations in the expression of microenvironmental components. In conclusion our results support tumor dissemination measured through Dmax as novel prognostic factor for cHL patients treated with ABVD.


Assuntos
Doença de Hodgkin , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bleomicina/uso terapêutico , Dacarbazina/uso terapêutico , Doxorrubicina/uso terapêutico , Fluordesoxiglucose F18/uso terapêutico , Genômica , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/genética , Humanos , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , RNA/uso terapêutico , Estudos Retrospectivos , Vimblastina/uso terapêutico
6.
Med Phys ; 49(6): 3816-3829, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35302238

RESUMO

BACKGROUND: Translation of predictive and prognostic image-based learning models to clinical applications is challenging due in part to their lack of interpretability. Some deep-learning-based methods provide information about the regions driving the model output. Yet, due to the high-level abstraction of deep features, these methods do not completely solve the interpretation challenge. In addition, low sample size cohorts can lead to instabilities and suboptimal convergence for models involving a large number of parameters such as convolutional neural networks. PURPOSE: Here, we propose a method for designing radiomic models that combines the interpretability of handcrafted radiomics with a sub-regional analysis. MATERIALS AND METHODS: Our approach relies on voxel-wise engineered radiomic features with average global aggregation and logistic regression. The method is illustrated using a small dataset of 51 soft tissue sarcoma (STS) patients where the task is to predict the risk of lung metastasis occurrence during the follow-up period. RESULTS: Using positron emission tomography/computed tomography and two magnetic resonance imaging sequences separately to build two radiomic models, we show that our approach produces quantitative maps that highlight the signal that contributes to the decision within the tumor region of interest. In our STS example, the analysis of these maps identified two biological patterns that are consistent with STS grading systems and knowledge: necrosis development and glucose metabolism of the tumor. CONCLUSIONS: We demonstrate how that method makes it possible to spatially and quantitatively interpret radiomic models amenable to sub-regions identification and biological interpretation for patient stratification.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
7.
Acta Oncol ; 61(6): 672-679, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35139735

RESUMO

Background: Several reports have suggested that radiotherapy after reconstructive surgery for head and neck cancer (HNC), could have deleterious effects on the flaps with respect to functional outcomes. To predict and prevent toxicities, flap delineation should be accurate and reproducible. The objective of the present study was to evaluate the interobserver variability of frequent types of flaps used in HNC, based on the recent GORTEC atlas.Materials and methods: Each member of an international working group (WG) consisting of 14 experts delineated the flaps on a CT set from six patients. Each patient had one of the five most commonly used flaps in HNC: a regional pedicled pectoralis major myocutaneous flap, a local pedicled rotational soft tissue facial artery musculo-mucosal (FAMM) (2 patients), a fasciocutaneous radial forearm free flap, a soft tissue anterolateral thigh (ALT) free flap, or a fibular free flap. The WG's contours were compared to a reference contour, validated by a surgeon and a radiologist specializing in HNC. Contours were considered as reproducible if the median Dice Similarity Coefficient (DSC) was > 0.7.Results: The median volumes of the six flaps delineated by the WG were close to the reference contour value, with approximately 50 cc for the pectoral, fibula, and ALT flaps, 20 cc for the radial forearm, and up to 10 cc for the FAMM. The volumetric ratio was thus close to the optimal value of 100% for all flaps. The median DSC obtained by the WG compared to the reference for the pectoralis flap, the FAMM, the radial forearm flap, ALT flap, and the fibular flap were 0.82, 0.40, 0.76, 0.81, and 0.76, respectively.Conclusions: This study showed that the delineation of four main flaps used for HNC was reproducible. The delineation of the FAMM, however, requires close cooperation between radiologist, surgeon and radiation oncologist because of the poor visibility of this flap on CT and its small size.


Assuntos
Carcinoma , Retalhos de Tecido Biológico , Neoplasias de Cabeça e Pescoço , Procedimentos de Cirurgia Plástica , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Melanoma , Procedimentos de Cirurgia Plástica/métodos , Reprodutibilidade dos Testes , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
8.
PET Clin ; 16(4): 597-612, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537132

RESUMO

Radiomics has undergone considerable development in recent years. In PET imaging, very promising results concerning the ability of handcrafted features to predict the biological characteristics of lesions and to assess patient prognosis or response to treatment have been reported in the literature. This article presents a checklist for designing a reliable radiomic study, gives an overview of the steps of the pipeline, and outlines approaches for data harmonization. Tips are provided for critical reading of the content of articles. The advantages and limitations of handcrafted radiomics compared with deep-learning approaches for the characterization of PET images are also discussed.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Humanos
9.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439152

RESUMO

Dissemination, expressed recently by the largest Euclidian distance between lymphoma sites (SDmax), appeared a promising risk factor in DLBCL patients. We investigated alternative distance metrics to characterize the robustness of the dissemination information. In 290 patients from the REMARC trial (NCT01122472), the Euclidean (Euc), Manhattan (Man), and Tchebychev (Tch) distances between the furthest lesions, firstly based on the centroid of each lesion and then directly from the two most distant tumor voxels and the Travelling Salesman Problem distance (TSP) were calculated. For PFS, the areas under the ROC curves were between 0.63 and 0.64, and between 0.62 and 0.65 for OS. Patients with high SDmax whatever the method of calculation or high SD_TSP had a significantly poorer outcome than patients with low SDmax or SD_TSP (p < 0.001 for both PFS and OS), with significance maintained in Ann Arbor advanced-stage patients. In multivariate analysis with total metabolic tumor volume and ECOG, each distance feature had an independent prognostic value for PFS. For OS, only SDmax_Tch, SDmax_Euc _Vox, and SDmax_Man _Vox reached significance. The spread of DLBCL lesions measured by the largest distance between lymphoma sites is a strong independent prognostic factor and could be measured directly from tumor voxels, allowing its development in the area of the deep learning segmentation methods.

10.
Eur Radiol ; 31(4): 2272-2280, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32975661

RESUMO

OBJECTIVE: Test a practical realignment approach to compensate the technical variability of MR radiomic features. METHODS: T1 phantom images acquired on 2 scanners, FLAIR and contrast-enhanced T1-weighted (CE-T1w) images of 18 brain tumor patients scanned on both 1.5-T and 3-T scanners, and 36 T2-weighted (T2w) images of prostate cancer patients scanned in one of two centers were investigated. The ComBat procedure was used for harmonizing radiomic features. Differences in statistical distributions in feature values between 1.5- and 3-T images were tested before and after harmonization. The prostate studies were used to determine the impact of harmonization to distinguish between Gleason grades (GGs). RESULTS: In the phantom data, 40 out of 42 radiomic feature values were significantly different between the 2 scanners before harmonization and none after. In white matter regions, the statistical distributions of features were significantly different (p < 0.05) between the 1.5- and 3-T images for 37 out of 42 features in both FLAIR and CE-T1w images. After harmonization, no statistically significant differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were significantly different between the 1.5- and 3-T images without harmonization, against 1 (FLAIR) or none (CE-T1w) with harmonization. In prostate studies, 636 radiomic features were significantly different between GGs after harmonization against 461 before. The ability to distinguish between GGs using radiomic features was increased after harmonization. CONCLUSION: ComBat harmonization efficiently removes inter-center technical inconsistencies in radiomic feature values and increases the sensitivity of studies using data from several scanners. KEY POINTS: • Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-shelf image standardization and feature realignment procedures. • Harmonized radiomic features enable one to pool data from different scanners and centers without a substantial loss of statistical power caused by intra- and inter-center variability. • The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not rely on any phantom acquisition.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Masculino , Imagens de Fantasmas
11.
MAGMA ; 34(3): 355-366, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33180226

RESUMO

OBJECTIVE: Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and scanners and suffers from bias field inhomogeneity. Radiomic studies are impacted by these effects that affect radiomic feature values. This paper describes a dedicated pipeline to increase reproducibility in breast MRI radiomic studies. MATERIALS AND METHODS: T1, T2, and T1-DCE MR images of two breast phantoms were acquired using two scanners and three dual breast coils. Images were retrospectively corrected for bias field inhomogeneity and further normalised using Z score or histogram matching. Extracted radiomic features were harmonised between coils by the ComBat method. The whole pipeline was assessed qualitatively and quantitatively using statistical comparisons on two series of radiomic feature values computed in the gel mimicking the normal breast tissue or in dense lesions. RESULTS: Intra and inter-acquisition variabilities were strongly reduced by the standardisation pipeline. Harmonisation by ComBat lowered the percentage of radiomic features significantly different between the three coils from 87% after bias field correction and MR normalisation to 3% in the gel, while preserving or improving performance of lesion classification in the phantoms. DISCUSSION: A dedicated standardisation pipeline was developed to reduce variabilities in breast MRI, which paves the way for robust multi-scanner radiomic studies but needs to be assessed on patient data.


Assuntos
Mama , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
Radiology ; 295(2): 328-338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154773

RESUMO

Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.


Assuntos
Biomarcadores/análise , Processamento de Imagem Assistida por Computador/normas , Software , Calibragem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Fenótipo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sarcoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X
13.
Front Oncol ; 10: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083003

RESUMO

Purpose: To design and validate a preprocessing procedure dedicated to T2-weighted MR images of lung cancers so as to improve the ability of radiomic features to distinguish between adenocarcinoma and other histological types. Materials and Methods: A discovery set of 52 patients with advanced lung cancer who underwent T2-weighted MR imaging at 3 Tesla in a single center study from August 2017 to May 2019 was used. Findings were then validated using a validation set of 19 additional patients included from May to October 2019. Tumor type was obtained from the pathology report after trans-thoracic needle biopsy, metastatic lymph node or metastasis samples, or surgical excisions. MR images were preprocessed using N4ITK bias field correction and by normalizing voxel intensities with fat as a reference region. Segmentation and extraction of radiomic features were performed with LIFEx software on the raw images, on the N4ITK-corrected images and on the fully preprocessed images. Two analyses were conducted where radiomic features were extracted: (1) from the whole tumor volume (3D analysis); (2) from all slices encompassing the tumor (2D analysis). Receiver operating characteristic (ROC) analysis was used to identify features that could distinguish between adenocarcinoma and other histological types. Sham experiments were also designed to control the number of false positive findings. Results: There were 31 (12) adenocarcinomas and 21 (7) other histological types in the discovery (validation) set. In 2D, preprocessing increased the number of discriminant radiomic features from 8 without preprocessing to 22 with preprocessing. 2D analysis yielded more features able to identify adenocarcinoma than 3D analysis (12 discriminant radiomic features after preprocessing in 3D). Preprocessing did not increase false positive findings as no discriminant features were identified in any of the sham experiments. The greatest sensitivity of the 2D analysis applied to preprocessed data was confirmed in the validation set. Conclusion: Correction for magnetic field inhomogeneities and normalization of voxel values are essential to reveal the full potential of radiomic features to identify the tumor histological type from MR T2-weighted images, with classification performance similar to those reported in PET/CT and in multiphase CT in lung cancers.

14.
J Nucl Med ; 61(1): 40-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201248

RESUMO

We assessed the predictive value of new radiomic features characterizing lesion dissemination in baseline 18F-FDG PET and tested whether combining them with baseline metabolic tumor volume (MTV) could improve prediction of progression-free survival (PFS) and overall survival (OS) in diffuse large B-cell lymphoma (DLBCL) patients. Methods: From the LNH073B trial (NCT00498043), patients with advanced-stage DLCBL and 18F-FDG PET/CT images available for review were selected. MTV and several radiomic features, including the distance between the 2 lesions that were farthest apart (Dmaxpatient), were calculated. Receiver-operating-characteristic analysis was used to determine the optimal cutoff for quantitative variables, and Kaplan-Meier survival analyses were performed. Results: With a median age of 46 y, 95 patients were enrolled, half of them treated with R-CHOP biweekly (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) and the other half with R-ACVBP (rituximab, doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone), with no significant impact on outcome. Median MTV and Dmaxpatient were 375 cm3 and 45 cm, respectively. The median follow-up was 44 mo. High MTV and Dmaxpatient were adverse factors for PFS (P = 0.027 and P = 0.0003, respectively) and for OS (P = 0.0007 and P = 0.0095, respectively). In multivariate analysis, only Dmaxpatient was significantly associated with PFS (P = 0.0014) whereas both factors remained significant for OS (P = 0.037 and P = 0.0029, respectively). Combining MTV (>384 cm3) and Dmaxpatient (>58 cm) yielded 3 risk groups for PFS (P = 0.0003) and OS (P = 0.0011): high with 2 adverse factors (4-y PFS and OS of 50% and 53%, respectively, n = 18), low with no adverse factor (94% and 97%, n = 36), and an intermediate category with 1 adverse factor (73% and 88%, n = 41). Conclusion: Combining MTV with a parameter reflecting the tumor burden dissemination further improves DLBCL patient risk stratification at staging.


Assuntos
Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bleomicina/uso terapêutico , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Doxorrubicina/uso terapêutico , Feminino , Fluordesoxiglucose F18 , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Metástase Neoplásica , Estadiamento de Neoplasias , Prednisona/uso terapêutico , Curva ROC , Medição de Risco , Rituximab/uso terapêutico , Resultado do Tratamento , Vincristina/uso terapêutico , Vindesina/uso terapêutico , Adulto Jovem
15.
Radiology ; 291(1): 53-59, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30694160

RESUMO

Background Radiomics extracts features from medical images more precisely and more accurately than visual assessment. However, radiomics features are affected by CT scanner parameters such as reconstruction kernel or section thickness, thus obscuring underlying biologically important texture features. Purpose To investigate whether a compensation method could correct for the variations of radiomic feature values caused by using different CT protocols. Materials and Methods Phantom data involving 10 texture patterns and 74 patients in cohorts 1 (19 men; 42 patients; mean age, 60.4 years; September-October 2013) and 2 (16 men; 32 patients; mean age, 62.1 years; January-September 2007) scanned by using different CT protocols were retrospectively included. For any radiomic feature, the compensation approach identified a protocol-specific transformation to express all data in a common space that were devoid of protocol effects. The differences in statistical distributions between protocols were assessed by using Friedman tests before and after compensation. Principal component analyses were performed on the phantom data to evaluate the ability to distinguish between texture patterns after compensation. Results In the phantom data, the statistical distributions of features were different between protocols for all radiomic features and texture patterns (P < .05). After compensation, the protocol effect was no longer detectable (P > .05). Principal component analysis demonstrated that each texture pattern was no longer displayed as different clusters corresponding to different imaging protocols, unlike what was observed before compensation. The correction for scanner effect was confirmed in patient data with 100% (10 of 10 features for cohort 1) and 98% (87 of 89 features for cohort 2) of P values less than .05 before compensation, compared with 30% (three of 10) and 15% (13 of 89) after compensation. Conclusion Image compensation successfully realigned feature distributions computed from different CT imaging protocols and should facilitate multicenter radiomic studies. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Steiger and Sood in this issue.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Tomógrafos Computadorizados/normas , Tomografia Computadorizada por Raios X/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Retrospectivos
16.
Oncotarget ; 9(56): 30855-30868, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30112113

RESUMO

BACKGROUND: To help interpret measurements in breast tissue and breast tumors from 18F-FDG PET scans, we studied the influence of age in measurements of PET parameters in normal breast tissue and in a breast cancer (BC) population. RESULTS: 522 women were included: 331 pts without history of BC (B-VOI) and 191 patients with BC (T-VOI). In B-VOI, there were significant differences between all age groups for Standardized Uptake Values (SUVs) and for 12 textural indices (TI) whereas histogram-based indices (HBI) did not vary between age groups. SUV values decreased over time whereas Homogeneity increased. We had a total of 210 T-VOI and no significant differences were found according to the histological type between 190 ductal carcinoma and 18 lobular carcinoma. Conversely, according to BC subtype most differences in PET parameters between age groups were found in Triple-Negative tumors (52) for 9 TI. On post-hoc Hochberg, most differences were found between the <45 year old (PRE) group and POST groups in NBT and in Triple-Negative tumors. CONCLUSION: We found significant SUVs and TI differences as a function of age in normal breast tissue and in BC radiomic phenotype with Triple-Negative tumors being the most affected. Our findings suggest that age should be taken into account as a co-covariable in radiomic models. METHODS: Patients were classified in 3 age groups: <45 yo (PRE), ≥45 and <55 yo (PERI) and ≥55 and <85 yo (POST) and we compared PET parameters using Anova test with post-hoc Bonferroni/Hochberg analyses: SUV (max, mean and peak), HBI and TI in both breasts and in breast tumor regions.

17.
Cancer Res ; 78(16): 4786-4789, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959149

RESUMO

Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy.Significance: This study presents a user-friendly, multi-platform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. Cancer Res; 78(16); 4786-9. ©2018 AACR.


Assuntos
Imagem Multimodal/estatística & dados numéricos , Neoplasias/diagnóstico por imagem , Radiometria/estatística & dados numéricos , Software , Fluordesoxiglucose F18/uso terapêutico , Heterogeneidade Genética , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Neoplasias/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos
18.
Support Care Cancer ; 26(12): 4217-4226, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29982900

RESUMO

BACKGROUND: Radiation-induced leukoencephalopathy (RIL) is the most threatening delayed complication of cerebral radiotherapy (RT) and remains roughly defined by cognitive dysfunction associated with diffuse FLAIR MRI white matter hyperintensities after brain irradiation. We documented clinical, neuropsychological, and radiological aspects of RI in order to refine diagnostic criteria. METHODS: Patients referred to our center for deterioration in cognitive complaint at least 6 months after completing a focal or whole brain RT underwent a systematic cross-sectional assessment including clinical examination, neuropsychological tests, and a standardized MRI protocol. Patients with progressive tumor were excluded. RESULTS: Forty patients were prospectively enrolled. Of these, 26 had received a focal RT, median dose of 53 Gy (range 50 to 60), and 14 had received a whole brain RT, median dose of 30 Gy. Cognitive complaints, gait apraxia, and urinary troubles were reported in 100, 67, and 38% of cases, respectively. On neuropsychological examination, patients displayed a global and severe cognitive decline through a subcortical frontal mode. The cognitive changes observed were not hippocampic, but related to executive dysfunction. On MRI, 68% of the patients had extensive FLAIR hyperintensities with anterior predominance, 87% had brain atrophy, and 21% had intraparenchymal cysts. T2*-weighted MRI showed small asignal areas in 53% of the patients. These abnormalities are evocative of cerebral small vessel disease. Fractional anisotropy in the corpus callosum correlated with the cognitive evaluation. No differentiation in terms of cognitive and MRI features could be made between patients treated with focal brain RT (glioma) and patients treated with WBRT (for brain metastases or PCNSL). CONCLUSIONS: RIL can be defined by clinical symptoms (subcortical frontal decline, gait apraxia, urinary incontinence) and MRI criteria (cortico-subcortical atrophy, spread FLAIR HI, T2* asignals). This condition mimics a diffuse progressive cerebral small vessel disease triggered by RT, independent of RT protocol.


Assuntos
Neoplasias Encefálicas/induzido quimicamente , Leucoencefalopatias/induzido quimicamente , Radioterapia/efeitos adversos , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos Prospectivos
19.
Phys Med Biol ; 63(10): 105003, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29633962

RESUMO

Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared [Formula: see text]: constant bin width and relative bounds; [Formula: see text] constant number of bins and relative bounds; [Formula: see text] constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing [Formula: see text] with [Formula: see text], but for only 20 when comparing [Formula: see text] with [Formula: see text], and nine when comparing [Formula: see text] with [Formula: see text]. Furthermore, when using [Formula: see text] or [Formula: see text] texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.


Assuntos
Neoplasias do Tronco Encefálico/patologia , Glioma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Substância Branca/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos
20.
Radiol Med ; 123(6): 415-423, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29368244

RESUMO

PURPOSE: Image texture analysis (TA) is a heterogeneity quantifying approach that cannot be appreciated by the naked eye, and early evidence suggests that TA has great potential in the field of oncology. The aim of this study is to evaluate parotid gland texture analysis (TA) combined with formal dosimetry as a factor for predicting severe late xerostomia in patients undergoing radiation therapy for head and neck cancers. METHODS: We performed a retrospective analysis of patients treated at our Radiation Oncology Unit between January 2010 and December 2015, and selected the patients whose normal dose constraints for the parotid gland (mean dose < 26 Gy for the bilateral gland) could not be satisfied due to the presence of positive nodes close to the parotid glands. The parotid gland that showed the higher V30 was contoured on CT simulation and analysed with LifeX Software©. TA parameters included features of grey-level co-occurrence matrix (GLCM), neighbourhood grey-level dependence matrix (NGLDM), grey-level run length matrix (GLRLM), grey-level zone length matrix (GLZLM), sphericity, and indices from the grey-level histogram. We performed a univariate and multivariate analysis between all the texture parameters, the volume of the gland, the normal dose parameters (V30 and Mean Dose), and the development of severe chronic xerostomia. RESULTS: Seventy-eight patients were included and 25 (31%) developed chronic xerostomia. The TA parameters correlated with severe chronic xerostomia included V30 (OR 5.63), Dmean (OR 5.71), Kurtosis (OR 0.78), GLCM Correlation (OR 1.34), and RLNU (OR 2.12). The multivariate logistic regression showed a significant correlation between V30 (0.001), GLCM correlation (p: 0.026), RLNU (p: 0.011), and chronic xerostomia (p < 0.001, R2:0.664). CONCLUSIONS: Xerostomia represents an important cause of morbidity for head and neck cancer survivors after radiation therapy, and in certain cases normal dose constraints cannot be satisfied. Our results seem promising as texture analysis could enhance the normal dose constraints for the prediction of xerostomia.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Glândula Parótida/efeitos da radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Tomografia Computadorizada por Raios X , Xerostomia/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA