Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(8): 1259-1269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38526617

RESUMO

This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.


Assuntos
Antibacterianos , Catharanthus , Klebsiella pneumoniae , Nanopartículas Metálicas , Óxido de Zinco , Klebsiella pneumoniae/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Catharanthus/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Difração de Raios X
2.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768893

RESUMO

Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.


Assuntos
Carbono-Carbono Liases/metabolismo , Rhizobiaceae/metabolismo , Estresse Salino , Agricultura/métodos , Produtos Agrícolas , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Plantas , Rizosfera , Salinidade , Solo/química , Microbiologia do Solo
3.
Microb Pathog ; 152: 104611, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33212199

RESUMO

The present study aims to establish pathogenic variability among Colletotrichum truncatum, an incitant of anthracnose disease across different chilli growing regions of Karnataka. Thirty suspected C. truncatum isolates were identified based on their morphological and conidial characteristics and further confirmed by Internal Transcribed Spacer DNA sequence analysis. Pathogenicity test was carried out by in vitro detached leaf and fruit assay, and also under greenhouse conditions using 20 different chilli cultivars grown across Karnataka. Colletotrichum truncatum isolates recorded the varied degree of pathogenicity index (PI) on different chilli cultivars. Isolate UOM-02 was found highly virulent (PI > 80 against 12 tested cultivars) and cultivar cv. 4 was found highly resistant to C. truncatum infection (Average PI, 48.21). Further, the involvement of enzymes such as cellulase, pectin methylesterase and ascorbate peroxidase in determining the virulence of the pathogen was established. The highest activity of catalase (UOM-24; 7.38 units), ascorbate peroxidase (UOM-02; 2.9 units), cellulase (UOM-02; 0.58 units), and pectin methylesterase (UOM-02; 6.7 units), was recorded by different C. truncatum isolates. Cellulase and pectin methylesterase activities were positively correlated with their pathogenicity, while catalase activity was found least correlated. Results of RAPD and ISSR analysis recorded higher polymorphism among the isolates. Interestingly these isolates were not clustered based on their geographical origin, Pathogenicity index and biochemical characters. From this study, the existence of highly virulent C. truncatum isolate (UOM-02), which can cause severe loss under favourable conditions, was revealed. Further, possible use of specific enzymes as an indicator of virulence of the pathogen is discussed.


Assuntos
Capsicum , Colletotrichum , Capsicum/genética , Colletotrichum/genética , Índia , Doenças das Plantas , Técnica de Amplificação ao Acaso de DNA Polimórfico
4.
Int J Nanomedicine ; 15: 8519-8536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173290

RESUMO

PURPOSE: The study aimed to find an effective method for fungal-mediated synthesis of zinc oxide nanoparticles using endophytic fungal extracts and to evaluate the efficiency of synthesized ZnO NPs as antimicrobial and anticancerous agents. METHODS: Zinc oxide nanoparticles (ZnO NPs) were produced from zinc nitrate hexahydrate with fungal filtrate by the combustion method. The spectroscopy and microscopy techniques, such as ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM) with selected area electron diffraction (SAED), were used to characterize the obtained product. Antibacterial activity on Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) samples was tested by broth microplate dilution technique. ZnO NPs antifungal activity was determined against plant pathogenic and regular contaminating fungi using the food-poison method. The anticancerous assay of the synthesized ZnO NPs was also investigated by cell uptake, MTT assay, and apoptosis assay. RESULTS: The fungal synthesized ZnO NPs were pure, mainly hexagonal in shape and size range of 34-55 nm. The biosynthesized ZnO NPs could proficiently inhibit both Gram-positive and Gram-negative bacteria. ZnO NPs synthesized from fungal extract exhibited antifungal activity in a dose-dependent manner with a high percentage of mycelial inhibition. The cell uptake analysis of ZnO NPs suggests that a significant amount of ZnO NPs (1 µg/mL) was internalized without disturbing cancer cells' morphology. As a result, the synthesized ZnO NPs showed significant anticancer activity against cancer cells at 1 µg/mL concentration. CONCLUSION: This fungus-mediated synthesis of ZnO NPs is a simple, eco-friendly, and non-toxic method. Our results show that the synthesized ZnO NPs are an excellent novel antimicrobial and anticancer agent. Further studies are required to understand the mechanism of the antimicrobial, anticancerous action of ZnO NPs and their possible genotoxicity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Nanopartículas Metálicas/química , Óxido de Zinco/metabolismo , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Ascomicetos/isolamento & purificação , Linhagem Celular Tumoral , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lamiales/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/microbiologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
5.
J Fungi (Basel) ; 6(3)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962271

RESUMO

The Plant Growth Promoting Fungi (PGPF) is used as a source of biofertilizers due to their production of secondary metabolites and beneficial effects on plants. The present work is focused on the co-cultivation of Trichoderma spp. (T. harzianum (PGT4), T. reesei (PGT5) and T. reesei (PGT13)) and the production of secondary metabolites from mono and co-culture and mycosynthesis of zinc oxide nanoparticles (ZnO NPs), which were characterized by a UV visible spectrophotometer, Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDAX) and Transmission Electron Microscope (TEM) and Selected Area (Electron) Diffraction (SAED) patterns. The fungal secondary metabolite crude was extracted from the mono and co-culture of Trichoderma spp. And were analyzed by GC-MS, which was further subjected for antibacterial activity against Xanthomonas oryzae pv. Oryzae, the causative organism for Bacterial Leaf Blight (BLB) in rice. Our results showed that the maximum zone of inhibition was recorded from the co-culture of Trichoderma spp. rather than mono cultures, which indicates that co-cultivation of beneficial fungi can stimulate the synthesis of novel secondary metabolites better than in monocultures. ZnO NPs were synthesized from fungal secondary metabolites of mono cultures of Trichoderma harzianum (PGT4), Trichoderma reesei (PGT5), Trichoderma reesei (PGT13) and co-culture (PGT4 + PGT5 + PGT13). These ZnO NPs were checked for antibacterial activity against Xoo, which was found to be of a dose-dependent manner. In summary, the biosynthesized ZnO NPs and secondary metabolites from co-culture of Trichoderma spp. are ecofriendly and can be used as an alternative for chemical fertilizers in agriculture.

6.
Biomolecules ; 10(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092985

RESUMO

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Química Verde , Humanos , Nanopartículas/ultraestrutura , Casca de Planta/química , Extratos Vegetais/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/síntese química
7.
Front Microbiol ; 10: 1244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249558

RESUMO

Fusarium graminearum is a leading plant pathogen that causes Fusarium head blight, stalk rot, and Gibberella ear rot diseases in cereals and posing the immense threat to the microbiological safety of the food. Herein, we report the green synthesis of zinc oxide nanoparticles from Syzygium aromaticum (SaZnO NPs) flower bud extract by combustion method and investigated their application for controlling of growth and mycotoxins of F. graminearum. Formation of SaZnO NPs was confirmed by spectroscopic methods. The electron microscopic (SEM and TEM) analysis revealed the formation of triangular and hexagonal shaped SaZnO NPs with size range 30-40 nm. The synthesized SaZnO NPs reduced the growth and production of deoxynivalenol and zearalenone of F. graminearum in broth culture. Further analysis revealed that treatment of mycelia with SaZnO NPs resulted in the accumulation of ROS in the dose-dependent manner. Also, SaZnO NPs treatment enhanced lipid peroxidation, depleted ergosterol content, and caused detrimental damage to the membrane integrity of fungi. Moreover, SEM observations revealed that the presence of diverged micro-morphology (wrinkled, rough and shrank surface) in the macroconidia treated with SaZnO NPs. Taken together, SaZnO NPs may find a potential application in agriculture and food industries due to their potent antifungal activity.

8.
Curr Genomics ; 17(2): 132-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226769

RESUMO

A total of 106 maize seed samples were collected from different agro-climatic regions of India. Sixty-two Fusarium isolates were recovered, 90% of which were identified as Fusarium verticillioides based on morphological and molecular characters. Use of the tef-1α gene corrected/refined the morphological species identifications of 11 isolates, and confirmed those of the remaining isolates. Genetic diversity among the Fusarium isolates involved multilocus fingerprinting profiles by Inter Simple Sequence Repeats (ISSR) UPGMA and tef-1α gene phenetic analyses; for which, we observed no significant differences among the isolates based on geographic origin or fumonisin production; most of the subdivision related to species. Genotyping was performed on the F. verticillioides isolates, using 12 primer sets from the fumonisin pathway, to elucidate the molec-ular basis of fumonisin production or non-production. One fumonisin-negative isolate, UOMMF-16, was unable to amplify nine of the 12 fumonisin cluster genes tested. We also used the CD-ELISA method to confirm fumonisin production for our 62 Fusarium isolates. Only 15 isolates were found to be fumonisin-negative. Interestingly, genotypic characterization re-vealed six isolates with various gene deletion patterns that also tested positive for the production of fumonisins via CD-ELISA. Our findings confirm the importance of molecular studies for species delimitation, and for observing genetic and phenotypic diversity, among the Fusaria.

9.
J Sci Food Agric ; 94(6): 1132-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24003016

RESUMO

BACKGROUND: Fusarium spp. are not only pathogenic to plants but are also known as toxin producers that negatively affect animal and human health. The identification of Fusarium spp. remains one of the most critical issues in fungal taxonomy. In this study, different strains of Fusarium spp. were isolated from sorghum seed samples and identified at the molecular level by tef-1α gene amplification. A multiplex polymerase chain reaction (mPCR) assay was developed to differentiate toxigenic and non-toxigenic Fusarium spp. by designing a primer for the Fum21 gene along with the Fum1 and Fum8 genes. A competitive direct enzyme-linked immunosorbent assay (CD-ELISA) was employed to assess the fumonisin-producing ability of Fusarium spp. Phylogenetic analyses were performed using partial sequences of tef-1α and inter-simple sequence repeat (ISSR) markers of different Fusarium spp. RESULTS: All 27 isolates of Fusarium spp. were positive for the tef-1α gene and revealed the presence of F. verticillioides, F. thapsina and F. cf. incarnatum-equiseti complex. The standardized mPCR assay distinguished toxigenic and non-toxigenic F. verticillioides. Further, mPCR fumonisin-positive F. verticillioides isolates were also positive by CD-ELISA. The tef-1α gene sequence was found to be useful in revealing intraspecific polymorphism to some extent. ISSR markers revealed a high level of polymorphism among different isolates of Fusarium spp., and the dendrogram of ISSR analyses grouped the 27 isolates into two major clusters. CONCLUSION: The present method provided rapid and reliable detection of fumonisin-producing Fusarium spp. The mPCR assay could be an alternative strategy to current conventional mycotoxin analytical techniques and a reliable tool for high-throughput monitoring of major mycotoxin-producing fungi during the processing steps of food and feed commodities.


Assuntos
DNA Fúngico/análise , Grão Comestível/microbiologia , Fumonisinas , Proteínas Fúngicas/genética , Fusarium/genética , Genes Fúngicos , Sorghum/microbiologia , Dieta , Humanos , Repetições de Microssatélites , Técnicas de Tipagem Micológica , Fatores de Alongamento de Peptídeos/genética , Filogenia , Polimorfismo Genético , Sementes/microbiologia , Especificidade da Espécie
10.
Pest Manag Sci ; 65(10): 1059-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19569083

RESUMO

BACKGROUND: The present study investigated the effect of seven Bacillus-species plant-growth-promoting rhizobacteria (PGPR) seed treatments on the induction of disease resistance in cowpea against mosaic disease caused by the blackeye cowpea mosaic strain of bean common mosaic virus (BCMV). RESULTS: Initially, although all PGPR strains recorded significant enhancement of seed germination and seedling vigour, GBO3 and T4 strains were very promising. In general, all strains gave reduced BCMV incidence compared with the non-bacterised control, both under screen-house and under field conditions. Cowpea seeds treated with Bacillus pumilus (T4) and Bacillus subtilis (GBO3) strains offered protection of 42 and 41% against BCMV under screen-house conditions. Under field conditions, strain GBO3 offered 34% protection against BCMV. The protection offered by PGPR strains against BCMV was evaluated by indirect enzyme-linked immunosorbent assay (ELISA), with lowest immunoreactive values recorded in cowpea seeds treated with strains GBO3 and T4 in comparison with the non-bacterised control. In addition, it was observed that strain combination worked better in inducing resistance than individual strains. Cowpea seeds treated with a combination of strains GBO3 + T4 registered the highest protection against BCMV. CONCLUSION: PGPR strains were effective in protecting cowpea plants against BCMV under both screen-house and field conditions by inducing resistance against the virus. Thus, it is proposed that PGPR strains, particularly GBO3, could be potential inducers against BCMV and growth enhancers in cowpea.


Assuntos
Bacillus/fisiologia , Comovirus/fisiologia , Fabaceae/microbiologia , Imunidade Inata , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Fabaceae/imunologia , Fabaceae/virologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/virologia , Sementes/imunologia , Sementes/microbiologia , Sementes/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA