Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 18(47): e2203234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36094789

RESUMO

Air-channel devices have a special advantage due to the promise of vacuum-like ballistic transport in air, radiation insensitivity, and nanoscale size. Here, achieving high current at low voltage along with considerable mechanical stability is a primary issue. The comparative analysis of four planar and metallic electrode-pair geometries at 10 nm channel length is presented. The impact of nano-electrode-pair geometries on overall device performance is investigated. Air-channel devices are operated at the ultra-low voltage of 5 mV to demonstrate the device dynamics of air-channel devices at low power. Investigations focus on the direct tunneling (DT) mechanism which is dominant in the low-voltage regime. Comparative analysis of different electrode-pair geometries reveals two orders of magnitude increment in the current just by modulating the electrode-pair structure. Theoretical analysis suggests that the emission current is directly related to the active junction area within the metal-air-metal interface at the direct tunneling regime. The geometry-dependent mechanical stability of different electrode pairs is compared by imaging biasing triggered nanoscale structural changes and pulsed biasing stress analysis. The results and claims are confirmed and consolidated with the statistical analysis. Experimental investigations provide strong directions for high-performance and stable devices. In-depth theoretical discussions will enable the accurate modeling of emerging low-power, high-speed, radiation-hardened nanoscale vacuum electronics.


Assuntos
Eletrônica , Transistores Eletrônicos , Metais/química
2.
Sci Rep ; 11(1): 10859, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035437

RESUMO

The fabrication of unique taper-ended GaN-Nanotowers structure based highly efficient ultraviolet photodetector is demonstrated. Hexagonally stacked, single crystalline GaN nanocolumnar structure (nanotowers) grown on AlN buffer layer exhibits higher photocurrent generation due to high quality nanotowers morphology and increased surface/volume ratio which significantly enhances its responsivity upon ultraviolet exposure leading to outstanding performance from the developed detection device. The fabricated detector display low dark current (~ 12 nA), high ILight/IDark ratio (> 104), fast time-correlated transient response (~ 433 µs) upon ultraviolet (325 nm) illumination. A high photoresponsivity of 2.47 A/W is achieved in self-powered mode of operation. The reason behind such high performance could be attributed to built-in electric field developed from a difference in Schottky barrier heights will be discussed in detail. While in photoconductive mode, the responsivity is observed to be 35.4 A/W @ - 3 V along with very high external quantum efficiency (~ 104%), lower noise equivalent power (~ 10-13 WHz-1/2) and excellent UV-Vis selectivity. Nanotower structure with lower strain and dislocations as well as reduced trap states cumulatively contributed to augmented performance from the device. The utilization of these GaN-Nanotower structures can potentially be useful towards the fabrication of energy-efficient ultraviolet photodetectors.

3.
J Vis Exp ; (159)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32478740

RESUMO

Resistive switching crossbar architecture is highly desired in the field of digital memories due to low cost and high-density benefits. Different materials show variability in resistive switching properties due to the intrinsic nature of the material used, leading to discrepancies in the field because of underlying operation mechanisms. This highlights a need for a reliable technique to understand mechanisms using nanostructural observations. This protocol explains a detailed process and methodology of in situ nanostructural analysis as a result of electrical biasing using transmission electron microscopy (TEM). It provides visual and reliable evidence of underlying nanostructural changes in real time memory operations. Also included is the methodology of fabrication and electrical characterizations for asymmetric crossbar structures incorporating amorphous vanadium oxide. The protocol explained here for vanadium oxide films can be easily extended to any other materials in a metal-dielectric-metal sandwiched structure. Resistive switching crossbars are predicted to serve the programmable logic and neuromorphic circuits for next-generation memory devices, given the understanding of the operation mechanisms. This protocol reveals the switching mechanism in a reliable, timely, and cost-effective way in any type of resistive switching materials, and thereby predicts the device's applicability.


Assuntos
Microscopia Eletrônica de Transmissão , Óxidos/química , Metais/química , Nanoestruturas/ultraestrutura
4.
Nano Lett ; 18(12): 7478-7484, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30441900

RESUMO

Scattering-free transport in vacuum tubes has always been superior to solid-state transistors. It is the advanced fabrication with mass production capability at low cost which drove solid-state nanoelectronics. Here, we combine the best of vacuum tubes with advanced nanofabrication technology. We present nanoscale, metal-based, field emission air channel transistors. Comparative analysis of tungsten-, gold-, and platinum-based devices is presented. Devices are fabricated with electron beam lithography, achieving channel lengths less than 35 nm. With this small channel length, vacuum-like carrier transport is possible in air under room temperature and pressure. Source and drain electrodes have planar, symmetric, and sharp geometry. Because of this, devices operate in bidirection with voltages <2 V and current values in few tens of nanoamperes range. The experimental data shows that influential operation mechanism is Fowler-Nordheim tunnelling in tungsten and gold devices, while Schottky emission in platinum device. The presented work enables a technology where metal-based switchable nanoelectronics can be created on any dielectric surface with low energy requirements.

5.
Opt Express ; 25(4): 3756-3764, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241587

RESUMO

As an alternative to metallic resonators, dielectric resonators can increase radiation efficiencies of metasurfaces at terahertz frequencies. Such subwavelength resonators made from low-loss dielectric materials operate on the basis of oscillating displacement currents. For full control of electromagnetic waves, it is essential that dielectric resonators operate around their resonant modes. Thus, understanding the nature of these resonances is crucial towards design implementation. To this end, an array of silicon resonators on a quartz substrate is designed to operate in transmission at terahertz frequencies. The resonator dimensions are tailored to observe their low-order modes of resonance at 0.58 THz and 0.61 THz respectively. We employ a terahertz near-field imaging technique to measure the complex near-fields of this dielectric resonator array. This unique method allows direct experimental observation of the first two fundamental resonances.

6.
Adv Mater ; 27(44): 7137-44, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26450363

RESUMO

Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications.


Assuntos
Equipamentos e Provisões Elétricas , Radiação Terahertz , Impedância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA