Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 540: 215717, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35568265

RESUMO

Aberrant activities of various cell cycle and DNA repair proteins promote cancer growth and progression and render them resistant to therapies. Here, we demonstrate that the anti-depressant imipramine blocks growth of triple-negative (TNBC) and estrogen receptor-positive (ER+) breast cancers by inducing cell cycle arrest and by blocking heightened homologous recombination (HR) and non-homologous end joining-mediated (NHEJ) DNA repair activities. Our results reveal that imipramine inhibits the expression of several cell cycle- and DNA repair-associated proteins including E2F1, CDK1, Cyclin D1, and RAD51. In addition, we show that imipramine inhibits the growth of ER + breast cancers by inhibiting the estrogen receptor- α (ER-α) signaling. Our studies in preclinical mouse models and ex vivo explants from breast cancer patients show that imipramine sensitizes TNBC to the PARP inhibitor olaparib and endocrine resistant ER + breast cancer to anti-estrogens. Our studies suggest that repurposing imipramine could enhance routine care for breast cancer patients. Based on these results, we designed an ongoing clinical trial, where we are testing the efficacy of imipramine for treating patients with triple-negative and estrogen receptor-positive breast cancer. Since aberrant DNA repair activity is used by many cancers to survive and become resistant to therapy, imipramine could be used alone and/or with currently used drugs for treating many aggressive cancers.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Reparo do DNA , Feminino , Humanos , Imipramina/farmacologia , Imipramina/uso terapêutico , Camundongos , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética
2.
Commun Biol ; 5(1): 493, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610507

RESUMO

The major limitations of DNA-targeting chemotherapy drugs include life-threatening toxicity, acquired resistance and occurrence of secondary cancers. Here, we report a small molecule, Carbazole Blue (CB), that binds to DNA and inhibits cancer growth and metastasis by targeting DNA-related processes that tumor cells use but not the normal cells. We show that CB inhibits the expression of pro-tumorigenic genes that promote unchecked replication and aberrant DNA repair that cancer cells get addicted to survive. In contrast to chemotherapy drugs, systemic delivery of CB suppressed breast cancer growth and metastasis with no toxicity in pre-clinical mouse models. Using PDX and ex vivo explants from estrogen receptor (ER) positive, ER mutant and TNBC patients, we further demonstrated that CB effectively blocks therapy-sensitive and therapy-resistant breast cancer growth without affecting normal breast tissue. Our data provide a strong rationale to develop CB as a viable therapeutic for treating breast cancers.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Reparo do DNA , Feminino , Humanos , Camundongos , Receptores de Estrogênio/metabolismo
3.
Cancer Res ; 82(10): 1872-1889, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35303054

RESUMO

Osteosarcoma is the most common malignancy of the bone, yet the survival for patients with osteosarcoma is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In patients with osteosarcoma, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy-number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Methyl RNA immunoprecipitation sequencing analysis and functional studies showed that ALKBH5 mediates its protumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key protumorigenic genes, consequently driving unchecked cell-cycle progression, incessant replication, and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth. SIGNIFICANCE: RNA demethylase ALKBH5 upregulates USP22 and RNF40 to inhibit histone H2A ubiquitination and induces expression of key replication and DNA repair-associated genes, driving osteosarcoma progression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Osteossarcoma , Homólogo AlkB 5 da RNA Desmetilase/genética , Histonas/metabolismo , Humanos , Metilação , Osteossarcoma/genética , RNA/genética , RNA/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Ubiquitinas/genética
4.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920726

RESUMO

Natural products have long been used as drugs to treat a wide array of human diseases. The lead compounds discovered from natural sources are used as novel templates for developing more potent and safer drugs. Natural products produce biological activity by binding with biological macromolecules, since natural products complement the protein-binding sites and natural product-protein interactions are already optimized in nature. Sirtuin 6 (SIRT6) is an NAD+ dependent histone deacetylase enzyme and a unique Sirtuin family member. It plays a crucial role in different molecular pathways linked to DNA repair, tumorigenesis, glycolysis, gluconeogenesis, neurodegeneration, cardiac hypertrophic responses, etc. Thus, it has emerged as an exciting target of several diseases such as cancer, neurodegenerative diseases, aging, diabetes, metabolic disorder, and heart disease. Recent studies have shown that natural compounds can act as modulators of SIRT6. In the current review, a list of natural products, their sources, and their mechanisms of SIRT6 activity modulation has been compiled. The potential application of these naturally occurring SIRT6 modulators in the amelioration of major human diseases such as Alzheimer's disease, aging, diabetes, inflammation, and cancer has also been delineated. Natural products such as isoquercetin, luteolin, and cyanidin act as SIRT6 activators, whereas vitexin, catechin, scutellarin, fucoidan, etc. work as SIRT6 inhibitors. It is noteworthy to mention that quercetin acts as both SIRT6 activator and inhibitor depending on its concentration used. Although none of them were found as highly selective and potent modulators of SIRT6, they could serve as the starting point for developing selective and highly potent scaffolds for SIRT6.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Sirtuínas/metabolismo , Animais , Produtos Biológicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Sirtuínas/antagonistas & inibidores
5.
AAPS PharmSciTech ; 20(2): 58, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623265

RESUMO

Aldara™ (5% w/w imiquimod) topical cream is approved by the US FDA for the treatment of superficial basal cell carcinoma. However, the cream formulation suffers from dose variability, low drug availability due to the incomplete release, and poor patient compliance. To achieve sustained and complete release of imiquimod, chitosan films were prepared by casting using propylene glycol as a plasticizer. Chitosan films had appropriate physicochemical characteristics for wound dressing and excellent content uniformity and maintained the original physical form of imiquimod. Films were capable of releasing a defined dose of imiquimod over a period of 7 days. The bioactivity of imiquimod was not affected by its entrapment in chitosan matrix as indicated by the results of in vitro growth inhibition assay. In addition, the film formulation showed significantly (p Ë‚ 0.05) higher drug accumulation in the skin when compared to commercial cream formulation.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Imiquimode/química , Absorção Cutânea/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Administração Tópica , Quitosana/administração & dosagem , Quitosana/farmacocinética , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Humanos , Imiquimode/administração & dosagem , Imiquimode/farmacocinética , Técnicas de Cultura de Órgãos , Absorção Cutânea/fisiologia
6.
Biomolecules ; 8(3)2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201881

RESUMO

Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Neuroglia/patologia , Animais , Humanos
7.
Brain Sci ; 8(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149687

RESUMO

One of the most commonly known chronic neurodegenerative disorders, Alzheimer's disease (AD), manifests the common type of dementia in 60⁻80% of cases. From a clinical standpoint, a patent cognitive decline and a severe change in personality, as caused by a loss of neurons, is usually evident in AD with about 50 million people affected in 2016. The disease progression in patients is distinguished by a gradual plummet in cognitive functions, eliciting symptoms such as memory loss, and eventually requiring full-time medical care. From a histopathological standpoint, the defining characteristics are intracellular aggregations of hyper-phosphorylated tau protein, known as neurofibrillary tangles (NFT), and depositions of amyloid ß-peptides (Aß) in the brain. The abnormal phosphorylation of tau protein is attributed to a wide gamut of neurological disorders known as tauopathies. In addition to the hyperphosphorylated tau lesions, neuroinflammatory processes could occur in a sustained manner through astro-glial activation, resulting in the disease progression. Recent findings have suggested a strong interplay between the mechanism of Tau phosphorylation, disruption of microtubules, and synaptic loss and pathology of AD. The mechanisms underlying these interactions along with their respective consequences in Tau pathology are still ill-defined. Thus, in this review: (1) we highlight the interplays existing between Tau pathology and AD; and (2) take a closer look into its role while identifying some promising therapeutic advances including state of the art imaging techniques.

8.
Biomolecules ; 8(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966233

RESUMO

Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide⁺ (NAD⁺) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings of SIRT6 since future research may hold the key to engendering strategies involving SIRT6 that may have significant implications for human health and expand upon possible treatment options. In this review, we are primarily concerned with exploring the latest advances in understanding SIRT6 and how it can alter the course of several life-threatening diseases such as processes related to aging, cancer, neurodegenerative diseases, heart disease, and diabetes (SIRT6 has also shown to be involved in liver disease, inflammation, and bone-related issues) and any recent promising pharmacological investigations or potential therapeutics that are of interest.


Assuntos
Cromatina/genética , Sirtuínas/química , Sirtuínas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Sirtuínas/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA