Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 27(6): 1361-1376, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177151

RESUMO

The fungal pathogen, Alternaria alternata is responsible for causing leaf spot disease in many plants, including chili pepper. Zinc (Zn) an essential micronutrient for plant growth, also increases resistance in plants against diseases, and also acts as an antifungal agent. Here, in vitro effects of ZnSO4 on the propagation of A. alternata were investigated, and also in vivo, the effect of foliar application of ZnSO4 was investigated in chili pepper plants under disease stress. In vitro, ZnSO4 inhibited fungal growth in a dose-dependent manner, with complete inhibition being observed at the concentration of 8.50 mM. Hyphae and conidial damage were observed along with abnormal activity of antioxidant enzymes, Fourier-transform infrared spectroscopy confirmed the major changes in the protein structure of the fungal biomass after Zn accumulation. In vivo, pathogen infection caused the highest leaf spot disease incidence, and cumulative disease index, which resulted in a significant reduction in the plant's growth (length and biomass), and physiochemical traits (photosynthetic pigment, activity of catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase). The heat map and principal component analysis based on disease, growth and, physico-chemical variables generated useful information regarding the best treatment useful for disease management. Foliar Zn (0.036 mM) acted as a resistance inducer in chili pepper plants that improved activities of antioxidants (CAT and POX), and defense compounds (PPO and PAL), while managing 77% of disease. The study indicated foliar ZnSO4 as an effective and sustainable agriculture practice to manage Alternaria leaf spot disease in chili pepper plants.

2.
Environ Sci Pollut Res Int ; 26(12): 12446-12458, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30847809

RESUMO

Cr(VI) tolerance level of phytopathogenic fungus viz., Macrophomina phaseolina (Tassi) Goid was assessed through growth, morphological, physiological, and metal accumulation assays. Initially, the fungus growth assays indicated that the fungus can grow over concentration range of 20-3000 ppm and exhibited high tolerance index (0.88-1.00) and minimum inhibitory concentration at 3500 ppm of Cr. Observations under compound and scanning electron microscope un-revealed the structural features of hyphae under Cr stress as thick-walled, aggregated, branched, short and broken, along with attachment of irregular objects on them. Metal accumulation analysis revealed reduction in Cr(VI) accumulation by the fungus with increase in metal concentration in the growth medium (500-3000 ppm). Cr stress induced upregulation of antioxidant enzyme activities (catalase, peroxidase and polyphenol oxidase), expression of genes (MSN1 and metallothionein) and appearnace of new protein bands suggesting the possible role in protection and survival of M. phaseolina against Cr(VI)-induced oxidative stress. This study concludes that interference of Cr with growth and physiological process of M. phaseolina could affect its infection level on its host plant, therefore, synergistic action of two factors needs to be addressed, which may aid to guide future research efforts in understanding impact of plant-pathogen-heavy metal interaction.


Assuntos
Ascomicetos/fisiologia , Cromo/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Expressão Gênica , Genes Fúngicos , Hifas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA