Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905061

RESUMO

Background: Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFß signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives: To test whether cholesterol-loading reduces VSMC TGFß signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods: Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfßr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfßr2 or partially deficient (Tgfßr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results: Cholesterol-loading of hVSMCs downregulated TGFß signaling and contractile gene expression; macrophage markers were induced. TGFß signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFß receptors into lipid rafts, with consequent TGFß signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFß signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfßr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFß signaling. Conclusions: Cholesterol suppresses TGFß signaling and the contractile state in hVSMC through partitioning of TGFß receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.

2.
Immunometabolism ; 3(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178388

RESUMO

BACKGROUND: Vascular smooth muscle cells (VSMC) exhibit phenotypic plasticity in atherosclerotic plaques, and among other approaches, has been modeled in vitro by cholesterol loading. METHODS: Meta-analysis of scRNA-seq data from VSMC lineage traced cells across five experiments of murine atherosclerosis was performed. In vivo expression profiles were compared to three in vitro datasets of VSMCs loaded with cholesterol and three datasets of polarized macrophages. RESULTS: We identified 24 cell clusters in the meta-analysis of single cells from mouse atherosclerotic lesions with notable heterogeneity across studies, especially for macrophage populations. Trajectory analysis of VSMC lineage positive cells revealed several possible paths of state transitions with one traversing from contractile VSMC to macrophages by way of a proliferative cell cluster. Transcriptome comparisons between in vivo and in vitro states underscored that data from three in vitro cholesterol-treated VSMC experiments did not mirror cell state transitions observed in vivo. However, all in vitro macrophage profiles analyzed (M1, M2, and oxLDL) were more similar to in vivo profiles of macrophages than in vitro VSMCs were to in vivo profiles of VSMCs. oxLDL loaded macrophages showed the most similarity to in vivo states. In contrast to the in vitro data, comparison between mouse and human in vivo data showed many similarities. CONCLUSIONS: Identification of the sources of variation across single cell datasets in atherosclerosis will be an important step towards understanding VSMC fate transitions in vivo. Also, we conclude that cholesterol-loading in vitro is insufficient to model the VSMC cell state transitions observed in vivo, which underscores the need to develop better cell models. Mouse models, however, appear to reproduce a number of the features of VSMCs in human plaques.

3.
Elife ; 102021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720008

RESUMO

Atherosclerosis is a disease of chronic inflammation. We investigated the roles of the cytokines IL-4 and IL-13, the classical activators of STAT6, in the resolution of atherosclerosis inflammation. Using Il4-/-Il13-/- mice, resolution was impaired, and in control mice, in both progressing and resolving plaques, levels of IL-4 were stably low and IL-13 was undetectable. This suggested that IL-4 is required for atherosclerosis resolution, but collaborates with other factors. We had observed increased Wnt signaling in macrophages in resolving plaques, and human genetic data from others showed that a loss-of-function Wnt mutation was associated with premature atherosclerosis. We now find an inverse association between activation of Wnt signaling and disease severity in mice and humans. Wnt enhanced the expression of inflammation resolving factors after treatment with plaque-relevant low concentrations of IL-4. Mechanistically, activation of the Wnt pathway following lipid lowering potentiates IL-4 responsiveness in macrophages via a PGE2/STAT3 axis.


Assuntos
Aterosclerose/terapia , Interleucina-4/administração & dosagem , Macrófagos/metabolismo , Via de Sinalização Wnt , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-4/metabolismo , Masculino , Camundongos
4.
Nat Commun ; 12(1): 843, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594062

RESUMO

Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33-/- mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-ß-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress.


Assuntos
MicroRNAs/metabolismo , Sistema Nervoso Simpático/fisiologia , Termogênese/genética , Tecido Adiposo Marrom/fisiologia , Animais , Temperatura Corporal/fisiologia , Peso Corporal , Encéfalo/metabolismo , Linhagem Celular , Temperatura Baixa , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Humanos , Integrases/metabolismo , Masculino , Camundongos , Camundongos Obesos , MicroRNAs/genética , Consumo de Oxigênio/fisiologia , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
5.
JACC Basic Transl Sci ; 4(6): 701-714, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709319

RESUMO

No effective treatment is yet available to reduce infarct size and improve clinical outcomes after acute myocardial infarction by enhancing early reperfusion therapy using primary percutaneous coronary intervention. The study showed that Kyoto University Substance 121 (KUS121) reduced endoplasmic reticulum stress, maintained adenosine triphosphate levels, and ameliorated the infarct size in a murine cardiac ischemia and reperfusion injury model. The study confirmed the cardioprotective effect of KUS121 in a porcine ischemia and reperfusion injury model. These findings confirmed that KUS121 is a promising novel therapeutic agent for myocardial infarction in conjunction with primary percutaneous coronary intervention.

6.
J Am Heart Assoc ; 8(13): e012609, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31242815

RESUMO

Background Micro RNA (miR)-33 targets cholesterol transporter ATP -binding cassette protein A1 and other antiatherogenic targets and contributes to atherogenic progression. Its inhibition or deletion is known to result in the amelioration of atherosclerosis in mice. However, mice lack the other member of the miR-33 family, miR-33b, which exists in humans and other large mammals. Thus, precise evaluation and comparison of the responsibilities of these 2 miRs during the progression of atherosclerosis has not been reported, although they are essential. Methods and Results In this study, we performed a comprehensive analysis of the difference between the function of miR-33a and miR-33b using genetically modified mice. We generated 4 strains with or without miR-33a and miR-33b. Comparison between mice with only miR-33a (wild-type mice) and mice with only miR-33b (miR-33a-/-/miR-33b+/+) revealed the dominant expression of miR-33b in the liver. To evaluate the whole body atherogenic potency of miR-33a and miR-33b, we developed apolipoprotein E-deficient/miR-33a+/+/miR-33b-/- mice and apolipoprotein E-deficient/miR-33a-/-/miR-33b+/+ mice. With a high-fat and high-cholesterol diet, the apolipoprotein E-deficient/miR-33a-/-/miR-33b+/+ mice developed increased atherosclerotic plaque versus apolipoprotein E-deficient/miR-33a+/+/miR-33b-/- mice, in line with the predominant expression of miR-33b in the liver and worsened serum cholesterol profile. By contrast, a bone marrow transplantation study showed no significant difference, which was consistent with the relevant expression levels of miR-33a and miR-33b in bone marrow cells. Conclusions The miR-33 family exhibits differences in distribution and regulation and particularly in the progression of atherosclerosis; miR-33b would be more potent than miR-33a.


Assuntos
Aterosclerose/genética , Hepatócitos/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Placa Aterosclerótica/genética , Animais , Apolipoproteínas B/metabolismo , Transplante de Medula Óssea , Colesterol/metabolismo , Colesterol na Dieta , Dieta Hiperlipídica , Progressão da Doença , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Camundongos Transgênicos , MicroRNAs/metabolismo , Triglicerídeos/metabolismo
7.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830865

RESUMO

Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.


Assuntos
Aterosclerose/imunologia , Diferenciação Celular/genética , Macrófagos/imunologia , Células Precursoras de Monócitos e Macrófagos/fisiologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/imunologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA-Seq , Receptores de LDL/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Célula Única , Quimeras de Transplante
8.
Clin Sci (Lond) ; 133(4): 583-595, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30777884

RESUMO

Recent reports, including ours, have indicated that microRNA (miR)-33 located within the intron of sterol regulatory element binding protein (SREBP) 2 controls cholesterol homeostasis and can be a potential therapeutic target for the treatment of atherosclerosis. Here, we show that SPAST, which encodes a microtubule-severing protein called SPASTIN, was a novel target gene of miR-33 in human. Actually, the miR-33 binding site in the SPAST 3'-UTR is conserved not in mice but in mid to large mammals, and it is impossible to clarify the role of miR-33 on SPAST in mice. We demonstrated that inhibition of miR-33a, a major form of miR-33 in human neurons, via locked nucleic acid (LNA)-anti-miR ameliorated the pathological phenotype in hereditary spastic paraplegia (HSP)-SPG4 patient induced pluripotent stem cell (iPSC)-derived cortical neurons. Thus, miR-33a can be a potential therapeutic target for the treatment of HSP-SPG4.


Assuntos
Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Células-Tronco Neurais/metabolismo , Neuritos/metabolismo , Oligonucleotídeos/genética , Paraplegia Espástica Hereditária/terapia , Espastina/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Células-Tronco Neurais/patologia , Neuritos/patologia , Neurogênese , Oligonucleotídeos/metabolismo , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Espastina/metabolismo
9.
Sci Rep ; 8(1): 16749, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425314

RESUMO

Acute cardiac rupture and adverse left ventricular (LV) remodeling causing heart failure are serious complications of acute myocardial infarction (MI). While cardio-hepatic interactions have been recognized, their role in MI remains unknown. We treated cultured cardiomyocytes with conditioned media from various cell types and analyzed the media by mass spectrometry to identify α1-microglobulin (AM) as an Akt-activating hepatokine. In mouse MI model, AM protein transiently distributed in the infarct and border zones during the acute phase, reflecting infiltration of AM-bound macrophages. AM stimulation activated Akt, NFκB, and ERK signaling and enhanced inflammation as well as macrophage migration and polarization, while inhibited fibrogenesis-related mRNA expression in cultured macrophages and cardiac fibroblasts. Intramyocardial AM administration exacerbated macrophage infiltration, inflammation, and matrix metalloproteinase 9 mRNA expression in the infarct and border zones, whereas disturbed fibrotic repair, then provoked acute cardiac rupture in MI. Shotgun proteomics and lipid pull-down analysis found that AM partly binds to phosphatidic acid (PA) for its signaling and function. Furthermore, systemic delivery of a selective inhibitor of diacylglycerol kinase α-mediated PA synthesis notably reduced macrophage infiltration, inflammation, matrix metalloproteinase activity, and adverse LV remodeling in MI. Therefore, targeting AM signaling could be a novel pharmacological option to mitigate adverse LV remodeling in MI.


Assuntos
alfa-Globulinas/metabolismo , Hormônios/metabolismo , Infarto do Miocárdio/patologia , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Movimento Celular , Ativação Enzimática , Fibrose , Inflamação/metabolismo , Fígado/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácidos Fosfatídicos/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular
10.
Arterioscler Thromb Vasc Biol ; 38(10): 2460-2473, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354203

RESUMO

Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.


Assuntos
Aterosclerose/metabolismo , MicroRNAs/metabolismo , Placa Aterosclerótica , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Estudos de Casos e Controles , HDL-Colesterol/sangue , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Absorção Intestinal , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/sangue
11.
Sci Rep ; 8(1): 8553, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867212

RESUMO

Recent evidence suggests that the accumulation of macrophages as a result of obesity-induced adipose tissue hypoxia is crucial for the regulation of tissue fibrosis, but the molecular mechanisms underlying adipose tissue fibrosis are still unknown. In this study, we revealed that periostin (Postn) is produced at extraordinary levels by adipose tissue after feeding with a high-fat diet (HFD). Postn was secreted at least from macrophages in visceral adipose tissue during the development of obesity, possibly due to hypoxia. Postn-/- mice had lower levels of crown-like structure formation and fibrosis in adipose tissue and were protected from liver steatosis. These mice also showed amelioration in systemic insulin resistance compared with HFD-fed WT littermates. Mice deficient in Postn in their hematopoietic compartment also had lower levels of inflammation in adipose tissue, in parallel with a reduction in ectopic lipid accumulation compared with the controls. Our data indicated that the regulation of Postn in visceral fat could be beneficial for the maintenance of healthy adipose tissue in obesity.


Assuntos
Moléculas de Adesão Celular/deficiência , Celulite (Flegmão)/metabolismo , Gorduras na Dieta/efeitos adversos , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Animais , Celulite (Flegmão)/induzido quimicamente , Celulite (Flegmão)/genética , Celulite (Flegmão)/patologia , Gorduras na Dieta/farmacologia , Fibrose , Gordura Intra-Abdominal/patologia , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia
12.
Mol Cell Biol ; 38(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712758

RESUMO

MicroRNA 33 (miR-33) targets ATP-binding cassette transporter A1 (ABCA1), and its deficiency increases serum high-density lipoprotein (HDL)-cholesterol (HDL-C) and ameliorates atherosclerosis. Although we previously reported that miR-33 deficiency increased peripheral Ly6Chigh monocytes on an ApoE-deficient background, the effect of miR-33 on the monocyte population has not been fully elucidated, especially in a wild-type (WT) background. We found that Ly6Chigh monocytes in miR-33-/- mice were decreased in peripheral blood and increased in bone marrow (BM). Expansion of myeloid progenitors and decreased apoptosis in Lin- Sca1+ c-Kit+ (LSK) cells were observed in miR-33-/- mice. A BM transplantation study and competitive repopulation assay revealed that hematopoietic miR-33 deficiency caused myeloid expansion and increased peripheral Ly6Chigh monocytes and that nonhematopoietic miR-33 deficiency caused reduced peripheral Ly6Chigh monocytes. Expression of high-mobility group AT-hook 2 (HMGA2) targeted by miR-33 increased in miR-33-deficient LSK cells, and its knockdown abolished the reduction of apoptosis. Transduction of human apolipoprotein A1 and ABCA1 in WT mouse liver increased HDL-C and reduced peripheral Ly6Chigh monocytes. These data indicate that miR-33 deficiency affects distribution of inflammatory monocytes through dual pathways. One pathway involves the enhancement of Hmga2 expression in hematopoietic stem cells to increase Ly6Chigh monocytes, and the other involves the elevation of HDL-C to decrease peripheral Ly6Chigh monocytes.


Assuntos
Antígenos Ly/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , HDL-Colesterol/sangue , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Monócitos/classificação , Monócitos/citologia , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução Genética
13.
Arterioscler Thromb Vasc Biol ; 37(11): 2161-2170, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882868

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that miR-33 (microRNA-33) inhibition and genetic ablation of miR-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS: MiR-33a-5p expression in central zone of human AAA was higher than marginal zone. MiR-33 deletion attenuated AAA formation in both mouse models of angiotensin II- and calcium chloride-induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride-induced AAA walls in miR-33-/- mice. In vitro experiments revealed that peritoneal macrophages from miR-33-/- mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from miR-33-/- mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of miR-33. Moreover, high-density lipoprotein cholesterol derived from miR-33-/- mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that miR-33-deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MiR-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS: These data strongly suggest that inhibition of miR-33 will be effective as a novel strategy for treating AAA.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Mediadores da Inflamação/metabolismo , MicroRNAs/metabolismo , Angiotensina II , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aortite/induzido quimicamente , Aortite/genética , Aortite/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Transplante de Medula Óssea , Cloreto de Cálcio , Linhagem Celular , Quimiocina CCL2/metabolismo , HDL-Colesterol/sangue , Dilatação Patológica , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Transdução de Sinais , Fatores de Tempo , Transfecção , Remodelação Vascular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
PLoS One ; 12(3): e0173975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28291840

RESUMO

Atherosclerosis can be induced by the injection of a gain-of-function mutant of proprotein convertase subtilisin/kexin type 9 (PCSK9)-encoding adeno-associated viral vector (AAVmPCSK9), avoiding the need for knockout mice models, such as low-density lipoprotein receptor deficient mice. As regression of atherosclerosis is a crucial therapeutic goal, we aimed to establish a regression model based on AAVmPCSK9, which will eliminate the need for germ-line genetic modifications. C57BL6/J mice were injected with AAVmPCSK9 and were fed with Western diet for 16 weeks, followed by reversal of hyperlipidemia by a diet switch to chow and treatment with a microsomal triglyceride transfer protein inhibitor (MTPi). Sixteen weeks following AAVmPCSK9 injection, mice had advanced atherosclerotic lesions in the aortic root. Surprisingly, diet switch to chow alone reversed hyperlipidemia to near normal levels, and the addition of MTPi completely normalized hyperlipidemia. A six week reversal of hyperlipidemia, either by diet switch alone or by diet switch and MTPi treatment, was accompanied by regression of atherosclerosis as defined by a significant decrease of macrophages in the atherosclerotic plaques, compared to baseline. Thus, we have established an atherosclerosis regression model that is independent of the genetic background.


Assuntos
Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Inflamação/prevenção & controle , Animais , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Hipercolesterolemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Circ Res ; 120(5): 835-847, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-27920122

RESUMO

RATIONALE: Heart failure and atherosclerosis share the underlying mechanisms of chronic inflammation followed by fibrosis. A highly conserved microRNA (miR), miR-33, is considered as a potential therapeutic target for atherosclerosis because it regulates lipid metabolism and inflammation. However, the role of miR-33 in heart failure remains to be elucidated. OBJECTIVE: To clarify the role of miR-33 involved in heart failure. METHODS AND RESULTS: We first investigated the expression levels of miR-33a/b in human cardiac tissue samples with dilated cardiomyopathy. Increased expression of miR-33a was associated with improving hemodynamic parameters. To clarify the role of miR-33 in remodeling hearts, we investigated the responses to pressure overload by transverse aortic constriction in miR-33-deficient (knockout [KO]) mice. When mice were subjected to transverse aortic constriction, miR-33 expression levels were significantly upregulated in wild-type left ventricles. There was no difference in hypertrophic responses between wild-type and miR-33KO hearts, whereas cardiac fibrosis was ameliorated in miR-33KO hearts compared with wild-type hearts. Despite the ameliorated cardiac fibrosis, miR-33KO mice showed impaired systolic function after transverse aortic constriction. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart. Deficiency of miR-33 impaired cardiac fibroblast proliferation, which was considered to be caused by altered lipid raft cholesterol content. Moreover, cardiac fibroblast-specific miR-33-deficient mice also showed decreased cardiac fibrosis induced by transverse aortic constriction as systemic miR-33KO mice. CONCLUSION: Our results demonstrate that miR-33 is involved in cardiac remodeling, and it preserves lipid raft cholesterol content in fibroblasts and maintains adaptive fibrotic responses in the remodeling heart.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Remodelação Ventricular/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley
17.
Arterioscler Thromb Vasc Biol ; 35(3): 535-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573853

RESUMO

OBJECTIVE: We previously showed that cholesterol loading in vitro converts mouse aortic vascular smooth muscle cells (VSMC) from a contractile state to one resembling macrophages. In human and mouse atherosclerotic plaques, it has become appreciated that ≈40% of cells classified as macrophages by histological markers may be of VSMC origin. Therefore, we sought to gain insight into the molecular regulation of this clinically relevant process. APPROACH AND RESULTS: VSMC of mouse (or human) origin were incubated with cyclodextrin-cholesterol complexes for 72 hours, at which time the expression at the protein and mRNA levels of contractile-related proteins was reduced and of macrophage markers increased. Concurrent was downregulation of miR-143/145, which positively regulate the master VSMC differentiation transcription factor myocardin. Mechanisms were further probed in mouse VSMC. Maintaining the expression of myocardin or miR-143/145 prevented and reversed phenotypic changes caused by cholesterol loading. Reversal was also seen when cholesterol efflux was stimulated after loading. Notably, despite expression of macrophage markers, bioinformatic analyses showed that cholesterol-loaded cells remained closer to the VSMC state, consistent with impairment in classical macrophage functions of phagocytosis and efferocytosis. In apoE-deficient atherosclerotic plaques, cells positive for VSMC and macrophage markers were found lining the cholesterol-rich necrotic core. CONCLUSIONS: Cholesterol loading of VSMC converts them to a macrophage-appearing state by downregulating the miR-143/145-myocardin axis. Although these cells would be classified by immunohistochemistry as macrophages in human and mouse plaques, their transcriptome and functional properties imply that their contributions to atherogenesis would not be those of classical macrophages.


Assuntos
Transdiferenciação Celular , Colesterol/metabolismo , Células Espumosas/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Sítios de Ligação , Linhagem da Célula , HDL-Colesterol/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Células Espumosas/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Células Jurkat , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Necrose , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Fenótipo , Placa Aterosclerótica , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fatores de Tempo , Transativadores/genética , Transfecção
18.
PLoS One ; 9(9): e108201, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255457

RESUMO

BACKGROUND: The mechanism of cardiac energy production against sustained pressure overload remains to be elucidated. METHODS AND RESULTS: We generated cardiac-specific kinase-dead (kd) calcium/calmodulin-dependent protein kinase kinase-ß (CaMKKß) transgenic (α-MHC CaMKKßkd TG) mice using α-myosin heavy chain (α-MHC) promoter. Although CaMKKß activity was significantly reduced, these mice had normal cardiac function and morphology at baseline. Here, we show that transverse aortic binding (TAC) in α-MHC CaMKKßkd TG mice led to accelerated death and left ventricular (LV) dilatation and dysfunction, which was accompanied by significant clinical signs of heart failure. CaMKKß downstream signaling molecules, including adenosine monophosphate-activated protein kinase (AMPK), were also suppressed in α-MHC CaMKKßkd TG mice compared with wild-type (WT) mice. The expression levels of peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, which is a downstream target of both of CaMKKß and calcium/calmodulin kinases, were also significantly reduced in α-MHC CaMKKßkd TG mice compared with WT mice after TAC. In accordance with these findings, mitochondrial morphogenesis was damaged and creatine phosphate/ß-ATP ratios assessed by magnetic resonance spectroscopy were suppressed in α-MHC CaMKKßkd TG mice compared with WT mice after TAC. CONCLUSIONS: These data indicate that CaMKKß exerts protective effects on cardiac adaptive energy pooling against pressure-overload possibly through phosphorylation of AMPK and by upregulation of PGC-1α. Thus, CaMKKß may be a therapeutic target for the treatment of heart failure.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Insuficiência Cardíaca/etiologia , Remodelação Ventricular/genética , Trifosfato de Adenosina , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Cadeias Pesadas de Miosina/genética , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais , Regulação para Cima , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
19.
Prog Mol Biol Transl Sci ; 111: 139-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22917229

RESUMO

As drug therapy is of limited efficacy in the treatment of heart diseases related to loss of cardiomyocytes, which have very poor division potential, regenerative medicine is expected to be a new strategy to address regenerative treatment in cardiac diseases. To achieve myocardial regeneration, elucidation of the mechanism of myocardial differentiation from stem cells is essential. Myocardial differentiation from embryonic pluripotent stem cells has been investigated worldwide, and remarkable developments such as establishment of induced pluripotent stem cells and transformation of somatic cells to cardiomyocytes have recently been made, markedly changing the strategy of regenerative medicine. At the same time, the close involvement of microRNA in the maintenance, proliferation, differentiation, and reprogramming of these stem cells has been revealed. In this report, microRNA is outlined, focusing on its role in myocardial differentiation.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Miocárdio/citologia , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , MicroRNAs/genética
20.
J Cell Biochem ; 113(11): 3455-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22678827

RESUMO

Tissue-specific patterns of gene expression play an important role in the distinctive features of each organ. Small CTD phosphatases (SCPs) 1-3 are recruited by repressor element 1 (RE-1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells. SCPs are highly expressed in the heart and contain microRNAs (miR)-26b, 26a-2, and 26a-1 with the same seed sequence in their introns. Therefore, we tried to investigate the roles of miR-26b and its host gene in neonatal rat cardiomyocytes. Overexpression of miR-26b suppressed the mRNA expression levels of ANF, ßMHC, and ACTA1 and reduced the cell surface area in cardiomyocytes. We confirmed that miR-26b targets the 3' untranslated region (3'UTR) of GATA4 and canonical transient receptor potential channel (TRPC) 3. Conversely, silencing of the endogenous miR-26b family enhanced the expression levels of TRPC3 and GATA4. On the other hand, overexpression of SCP1 induced the mRNA expression of ANF and ßMHC and increased the cell surface area in cardiomyocytes. Next, we compared the effect of overexpression of SCP1 with its introns and SCP1 cDNA to observe the net function of SCP1 expression on cardiac hypertrophy. When the expression levels of SCP1 were the same, the overexpression of SCP1 cDNA had a greater effect at inducing cardiac hypertrophy than SCP1 cDNA with its intron. In conclusion, SCP1 itself has the potential to induce cardiac hypertrophy; however, the effect is suppressed by intronic miR-26b in cardiomyocytes. miR-26b has an antagonistic effect on its host gene SCP1.


Assuntos
Cardiomegalia/genética , Regulação da Expressão Gênica , Íntrons , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Genes Reporter , Luciferases , Masculino , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , RNA Interferente Pequeno/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA