Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(9): e2300758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639319

RESUMO

SCOPE: Obesity and metabolic diseases are closely associated, and individuals who become obese are also prone to type 2 diabetes and cardiovascular disorders. Gut microbiota is mediated by diet and can influence host metabolism and the incidence of metabolic disorders. Recent studies have suggested that improving gut microbiota through a fructooligosaccharide (FOS)-supplemented diet may ameliorate obesity and other metabolic disorders. Although accumulating evidence supports the notion of the developmental origins of health and disease, the underlying mechanisms remain obscure. METHODS AND RESULTS: ICR mice are fed AIN-93G formula-based cellulose -, FOS-, acetate-, or propionate-supplemented diets during pregnancy. Offspring are reared by conventional ICR foster mothers for 4 weeks; weaned mice are fed high fat diet for 12 weeks and housed individually. The FOS and propionate offspring contribute to suppressing obesity and improving glucose intolerance. Gut microbial compositions in FOS-fed mothers and their offspring are markedly changed. However, the beneficial effect of FOS diet on the offspring is abolished when antibiotics are administered to pregnant mice. CONCLUSION: The findings highlight the link between the maternal gut environment and the developmental origin of metabolic syndrome in offspring. These results open novel research avenues into preemptive therapies for metabolic disorders by targeting the maternal gut microbiota.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos ICR , Obesidade , Oligossacarídeos , Animais , Gravidez , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Obesos , Camundongos , Efeitos Tardios da Exposição Pré-Natal , Fenótipo , Fenômenos Fisiológicos da Nutrição Materna , Suplementos Nutricionais
2.
Gut Microbes ; 15(1): 2161271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36604628

RESUMO

Fermented foods demonstrate remarkable health benefits owing to probiotic bacteria or microproducts produced via bacterial fermentation. Fermented foods are produced by the fermentative action of several lactic acid bacteria, including Leuconostoc mesenteroides; however, the exact mechanism of action of these foods remains unclear. Here, we observed that prebiotics associated with L. mesenteroides-produced exopolysaccharides (EPS) demonstrate substantial host metabolic benefits. L. mesenteroides-produced EPS is an indigestible α-glucan, and intake of the purified form of EPS improved glucose metabolism and energy homeostasis through EPS-derived gut microbial short-chain fatty acids, and changed gut microbial composition. Our findings reveal an important mechanism that accounts for the effects of diet, prebiotics, and probiotics on energy homeostasis and suggests an approach for preventing lifestyle-related diseases by targeting bacterial EPS.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Leuconostoc mesenteroides , Probióticos , Prebióticos , Lactobacillales/metabolismo , Bactérias , Fermentação
3.
Mol Metab ; 67: 101649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462626

RESUMO

OBJECTIVE: The gastrointestinal tract affects physiological activities and behavior by secreting hormones and generating signals through the activation of nutrient sensors. GPR119, a lipid sensor, is indirectly involved in the secretion of incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, by enteroendocrine cells, while it directly stimulates insulin secretion by pancreatic beta cells. Since GPR119 has the potential to modulate metabolic homeostasis in obesity and diabetes, it has attracted interest as a therapeutic target. However, previous studies have shown that the deletion of Gpr119 in mice does not affect glucose homeostasis and appetite in either basal or high-fat diet-fed conditions. Therefore, the present study aimed to explore the role of GPR119 signaling system in energy metabolism and feeding behavior in mice. METHODS: Gpr119 knockout (KO) mice were generated using CRISPR-Cas9 gene-editing technology, and their feeding behavior and energy metabolism were evaluated and compared with those of wild type (WT) mice. RESULTS: Upon inducing metabolic stress via food deprivation, Gpr119 KO mice exhibited lower blood glucose levels and a higher body weight reduction compared to WT mice. Although food intake in WT and KO mice were similar under free-feeding conditions, Gpr119 KO mice exhibited increased food intake when they were refed after 24 h of food deprivation. Further, food-deprived Gpr119 KO mice presented shorter post-meal intervals and lower satiety for second and later meals during refeeding, resulting in increased food intake. Associated with this meal pattern, levels of oleoylethanolamide (OEA), an endogenous agonist of GPR119, in the luminal contents of the distal gastrointestinal tract were elevated within 2 h after refeeding. The large-intestinal infusion of OEA prolonged post-meal intervals and increased satiety in the first meal, but not the second meal. On the other hand, infusion of oleic acid increased cecal OEA levels at 2 h from the beginning of infusion, while prolonging post-meal intervals and increasing satiety on the meals that occurred approximately 2 h after the infusion. Cecal OEA levels were low in antibiotic-treated mice, suggesting that the gut microbiota partially synthesizes OEA from oleic acid. CONCLUSIONS: Collectively, our results indicate that the activation of gastrointestinal GPR119 by microbiota-produced OEA derived from oleic acid is associated with satiety control and energy homeostasis under energy shortage conditions.


Assuntos
Microbiota , Ácido Oleico , Camundongos , Animais , Comportamento Alimentar , Camundongos Knockout , Metabolismo Energético
4.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36480287

RESUMO

Medium-chain triglycerides (MCTs), which consist of medium-chain fatty acids (MCFAs), are unique forms of dietary fat with various health benefits. G protein-coupled 84 (GPR84) acts as a receptor for MCFAs (especially C10:0 and C12:0); however, GPR84 is still considered an orphan receptor, and the nutritional signaling of endogenous and dietary MCFAs via GPR84 remains unclear. Here, we showed that endogenous MCFA-mediated GPR84 signaling protected hepatic functions from diet-induced lipotoxicity. Under high-fat diet (HFD) conditions, GPR84-deficient mice exhibited nonalcoholic steatohepatitis (NASH) and the progression of hepatic fibrosis but not steatosis. With markedly increased hepatic MCFA levels under HFD, GPR84 suppressed lipotoxicity-induced macrophage overactivation. Thus, GPR84 is an immunomodulating receptor that suppresses excessive dietary fat intake-induced toxicity by sensing increases in MCFAs. Additionally, administering MCTs, MCFAs (C10:0 or C12:0, but not C8:0), or GPR84 agonists effectively improved NASH in mouse models. Therefore, exogenous GPR84 stimulation is a potential strategy for treating NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores Acoplados a Proteínas G/agonistas , Ácidos Graxos , Gorduras na Dieta/farmacologia , Triglicerídeos , Cirrose Hepática
5.
Pharmacol Ther ; 239: 108273, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057320

RESUMO

Dysbiosis is associated with various diseases. The composition and diversity of gut microbiota affect host physiology through the production of bioactive metabolites. Short-chain fatty acids are the main metabolites produced by microbial fermentation of dietary fiber. They play a crucial role in maintaining metabolic, nervous, and immune system. Short-chain fatty acids not only serve as an energy source for the host but also act as for G-protein-coupled receptor signaling molecules and histone deacetylase inhibitors. In particular, the discovery and deorphanization of free fatty acid receptors 2 and 3 (GPR43/41) have shed light on the molecular mechanisms underlying the regulation of physiological processes by short-chain fatty acids. The short-chain fatty acid receptors sense the nutrient status and transduce signals to maintain cellular homeostasis. Dysbiosis affects short-chain fatty acid production and impairs the signaling, leading to cellular dysfunction. We review the current understanding of short-chain fatty acid-mediated regulation of physiological processes and discuss the molecular pharmacology of short-chain fatty acid and the receptor. We also discuss recent advances in the use of prebiotics and probiotics in the treatment of disease.


Assuntos
Microbioma Gastrointestinal , Humanos , Disbiose/complicações , Ácidos Graxos Voláteis/metabolismo , Metabolismo Energético , Fibras na Dieta
6.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628369

RESUMO

Due to the excess energy intake, which is a result of a high fat and high carbohydrate diet, dysfunction of energy balance leads to metabolic disorders such as obesity and type II diabetes mellitus (T2DM). Since obesity can be a risk factor for various diseases, including T2DM, hypertension, hyperlipidemia, and metabolic syndrome, novel prevention and treatment are expected. Moreover, host diseases linked to metabolic disorders are associated with changes in gut microbiota profile. Gut microbiota is affected by diet, and nutrients are used as substrates by gut microbiota for produced metabolites, such as short-chain and long-chain fatty acids, that may modulate host energy homeostasis. These free fatty acids are not only essential energy sources but also signaling molecules via G-protein coupled receptors (GPCRs). Some GPCRs are critical for metabolic functions, such as hormone secretion and immune function in various types of cells and tissues and contribute to energy homeostasis. The current studies have shown that GPCRs for gut microbial metabolites improved host energy homeostasis and systemic metabolic disorders. Here, we will review the association between diet, gut microbiota, and host energy homeostasis.


Assuntos
Dieta , Microbioma Gastrointestinal , Doenças Metabólicas , Receptores Acoplados a Proteínas G , Diabetes Mellitus Tipo 2/complicações , Microbioma Gastrointestinal/fisiologia , Homeostase , Humanos , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Biochem Biophys Res Commun ; 557: 48-54, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862459

RESUMO

Olfactory receptor 78 (Olfr78), which is also known as a receptor for short-chain fatty acids (SCFAs) produced via gut microbial fermentation from indigestible polysaccharides such as dietary fibers, is expressed in the enteroendocrine cells of the colon. However, the role of Olfr78 in gut hormone secretion remains unknown. Here, we aimed to investigate the function and mechanism of action of Olfr78 in vivo and in vitro. Toward this, we assessed the expression of Olfr78 in several tissues, affinity of Olfr78 to various monocarboxylates, and the secretion of anorexigenic gut hormone peptide YY (PYY) via Olfr78 using various molecular and biochemical techniques. Olfr78 was abundantly expressed in the colon and mouse enteroendocrine cell line STC-1 and showed specific affinity to SCFAs such as acetate and propionate, but not butyrate, in a monocarboxylate ligand screening assay using a heterologous expression system. Acetate promoted PYY secretion in STC-1 cells via Olfr78-protein kinase A signaling, whereas the effects were abolished by Olfr78 RNA interference. Colonic SCFAs production via oral administration of fructo-oligosaccharide significantly increased plasma PYY levels, whereas this effect was abolished in Olfr78-deficient and germ-free mice. These results suggested that the SCFA receptor Olfr78 is important for anti-obesity and anorexigenic effects of the gut microbiota and dietary fibers.


Assuntos
Anorexia/metabolismo , Anorexia/microbiologia , Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Obesidade/microbiologia , Peptídeo YY/metabolismo , Receptores Odorantes/metabolismo , Animais , Anorexia/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
8.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199353

RESUMO

Toxoplasmosis is a worldwide zoonosis caused by the obligate intracellular parasite Toxoplasma gondii The symptoms of congenital toxoplasmosis range from embryonic death and resorption to subclinical infection, but the mechanism of disease onset remains unclear. C-X-C motif chemokine receptor 3 (CXCR3) is highly expressed in Th1-associated immune cells and plays an important role in the trafficking and activation of immune cells. However, the roles of CXCR3 in T. gondii-induced fetal loss and the molecular mechanism of embryo resorption remain poorly understood. In this study, we investigated the role of CXCR3 in fetal wastage caused by T. gondii infection using CXCR3-deficient (CXCR3-/-) mice. CXCR3-/- and wild-type pregnant mice were inoculated intraperitoneally with T. gondii tachyzoites on day 3.5 of gestation (Gd3.5). Pregnancy rates decreased as the pregnancy progressed in both infected groups; however, infected CXCR3-/- mice showed a significant fetal loss at Gd13.5 compared with that at Gd7.5. All embryos of the infected groups showed necrosis, and embryo resorption was significantly increased in infected CXCR3-/- compared with wild-type mice at Gd13.5. The parasite load of fetoplacental tissues was significantly increased in CXCR3-/- mice at Gd10.5. Moreover, mRNA expression levels of inducible nitric oxide synthase were significantly increased in fetoplacental tissues from infected wild-type mice compared to infected CXCR3-/- mice following the infection. These results suggested that CXCR3-dependent immune responses provide anti-Toxoplasma activity and play an essential role in reducing embryo resorption and fetal loss caused by T. gondii infection during early pregnancy.


Assuntos
Perda do Embrião/patologia , Feto/patologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/patologia , Receptores CXCR3/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Adulto , Animais , Modelos Animais de Doenças , Feminino , Mortalidade Fetal , Humanos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II , Gravidez
9.
Proc Natl Acad Sci U S A ; 116(47): 23813-23821, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685604

RESUMO

Ketone bodies, including ß-hydroxybutyrate and acetoacetate, are important alternative energy sources during energy shortage. ß-Hydroxybutyrate also acts as a signaling molecule via specific G protein-coupled receptors (GPCRs); however, the specific associated GPCRs and physiological functions of acetoacetate remain unknown. Here we identified acetoacetate as an endogenous agonist for short-chain fatty acid (SCFA) receptor GPR43 by ligand screening in a heterologous expression system. Under ketogenic conditions, such as starvation and low-carbohydrate diets, plasma acetoacetate levels increased markedly, whereas plasma and cecal SCFA levels decreased dramatically, along with an altered gut microbiota composition. In addition, Gpr43-deficient mice showed reduced weight loss and suppressed plasma lipoprotein lipase activity during fasting and eucaloric ketogenic diet feeding. Moreover, Gpr43-deficient mice exhibited minimal weight decrease after intermittent fasting. These observations provide insight into the role of ketone bodies in energy metabolism under shifts in nutrition and may contribute to the development of preventive medicine via diet and foods.


Assuntos
Dieta Cetogênica , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Jejum , Células HEK293 , Humanos , Ligantes , Lipase Lipoproteica/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA