Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39302157

RESUMO

In this study, we investigate the behavior of carbon clusters (Cn, where n ranges from 16 to 26) supported on the surface of MgO. We consider the impact of doping with common impurities (such as Si, Mn, Ca, Fe, and Al) that are typically found in ores. Our approach combines density functional theory calculations with machine learning force field molecular dynamics simulations. It is found that the C21 cluster, featuring a core-shell structure composed of three pentagons isolated by three hexagons, demonstrates exceptional stability on the MgO surface and behaves as an "enhanced binding agent" on MgO-doped surfaces. The molecular dynamics trajectories reveal that the stable C21 coating on the MgO surface exhibits less mobility compared to other sizes Cn clusters and the flexible graphene layer on MgO. Furthermore, this stability persists even at temperatures up to 1100K. The analysis of the electron localization function and potential function of Cn on MgO reveals the high localization electron density between the central carbon of the C21 ring and the MgO surface. This work proposes that the C21 island serves as a superstable and less mobile precursor coating on MgO surfaces. This explanation sheds light on the experimental defects observed in graphene products, which can be attributed to the reduced mobility of carbon islands on a substrate that remains frozen and unchanged.

2.
ACS Appl Mater Interfaces ; 16(32): 42615-42622, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101798

RESUMO

Porous materials synthesized through bottom-up approaches, such as metal-organic frameworks and covalent organic frameworks, have attracted attention owing to their design flexibility for functional materials. However, achieving the chemical and thermal stability of these materials for various applications is challenging considering the reversible coordination bonds and irreversible covalent bonds in their frameworks. Thus, ordered carbonaceous frameworks (OCFs) emerge as a promising class of bottom-up materials with good periodicity, thermal and chemical stability, and electrical conductivity. However, a few OCFs have been reported owing to the limited range of precursor molecules. Herein, we designed a hexaazatrinaphthylene-based molecule with enediyne groups as a precursor molecule for synthesizing an OCF. The solid-state Bergman cyclization of enediyne groups at a low temperature formed a microporous polymer and an OCF, exhibiting redox activity and demonstrating their potential for electrochemical applications. The microporous polymer was used as an active material in sodium-ion batteries, while the OCF was used as an electrochemical capacitor. These findings illustrate the utility of the Bergman cyclization reaction for synthesizing microporous polymers and OCFs with a customizable functionality for broad applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39161048

RESUMO

In recent years, significant attention has been directed toward advancing compact, point-of-care testing (POCT) devices to better deliver patient care and alleviate the burden on the medical care system. Common POCTs, such as blood oxygen sensors, leverage electrochemical sensing in their design. However, conventional electrochemical devices typically use Ag/AgCl reference electrodes, which are likely to release trace amounts of silver ions that contaminate the working electrode, causing rapid deterioration of the devices. This study proposes an effective reference electrode using graphene-coated porous silica spheres (G/PSS) with embedded Prussian blue (PB), denoted PB/G/PSS, designed specifically for small oxygen sensors. PB is a redox species that is an improvement over Ag/AgCl since it is significantly less water-soluble than AgCl. Since PB is an insulator, we dispersed PB in G/PSS, well-conductive mesoporous matrices, to ensure contact between PB clusters and the electrolytes. Moreover, the monodispersed, spherically shaped PB/G/PSS is an advantageous medium for fabricating POCT devices by screen printing. In this study, the open-circuit potential of the PB/G/PSS electrode remained stable within 30 mV for 31 days. The small oxygen sensor assembled through screen printing using PB/G/PSS demonstrated stable operation for several days or more. In contrast, a similar sensor with Ag/AgCl reference electrode rapidly deteriorated within a day. This PB/G/PSS reference electrode with improved stability is expected to be an excellent alternative to the Ag/AgCl system for small electrochemical-based POCT devices.

4.
ACS Appl Mater Interfaces ; 16(35): 46259-46269, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39172034

RESUMO

Although lithium-oxygen batteries (LOBs) hold the promise of high gravimetric energy density, this potential is hindered by high charging voltages. To ensure that the charging voltage remains low, it is crucial to generate discharge products that can be easily decomposed during the successive charging process. In this study, we discovered that the use of amide-based electrolyte solvents containing a fluorinated moiety can notably establish a sustained voltage plateau at low-charging voltages at around 3.5 V. This occurs under conditions that can verify the feasibility of achieving a benchmark energy density value of 500 Wh kg-1. Notably, the achievement of the low-voltage plateau was accomplished solely by relying on the intrinsic properties of the electrolyte solvent. Indeed, synchrotron X-ray diffraction measurements have shown that the use of fluorine-containing amide-based electrolyte solvents results in the formation of highly decomposable discharge products, such as amorphous and Li-deficient lithium peroxides.

5.
Chem Sci ; 15(27): 10350-10358, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994421

RESUMO

Nitrogen (N) doping of perovskite-type oxides is an effective method for enhancing their photocatalytic performance. Quantitative and qualitative analyses of the doped N species are essential for a deeper understanding of the catalytic activity enhancement mechanism. However, examining the N environment in perovskite-type oxides, particularly in the bulk, using conventional analytical techniques, such as X-ray photoelectron spectroscopy (XPS), is challenging. In this study, we propose a new analytical technique, advanced temperature-programmed desorption (TPD) up to 1600 °C, to complement the conventional methods. TPD can quantify all N species in bulk oxides. Moreover, it facilitates chemical speciation of N environments, such as substitutional and interstitial N species. This is verified by XPS, CHN elemental analysis, X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier-transform spectroscopy. This study demonstrates the feasibility of advanced TPD as a new analytical method that offers comprehensive information on the N species within N-doped oxide materials at the bulk level.

6.
Chemistry ; : e202400669, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924194

RESUMO

Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.

7.
ACS Appl Mater Interfaces ; 16(22): 29177-29187, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781454

RESUMO

Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.

8.
Small ; 20(16): e2306325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032161

RESUMO

Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.

9.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

10.
Chem Sci ; 14(32): 8448-8457, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592983

RESUMO

The structural evolution of highly mesoporous templated carbons is examined from temperatures of 1173 to 2873 K to elucidate the optimal conditions for facilitating graphene-zipping reactions whilst minimizing graphene stacking processes. Mesoporous carbons comprising a few-layer graphene wall display excellent thermal stability up to 2073 K coupled with a nanoporous structure and three-dimensional framework. Nevertheless, advanced temperature-programmed desorption (TPD), X-ray diffraction, and Raman spectroscopy show graphene-zipping reactions occur at temperatures between 1173 and 1873 K. TPD analysis estimates zipping reactions lead to a 1100 fold increase in the average graphene-domain, affording the structure a superior chemical stability, electrochemical stability, and electrical conductivity, while increasing the bulk modulus of the framework. At above 2073 K, the carbon framework shows a loss of porosity due to the development of graphene-stacking structures. Thus, a temperature range between 1873 and 2073 K is preferable to balance the developed graphene domain size and high porosity. Utilizing a neutron pair distribution function and soft X-ray emission spectra, we prove that these highly mesoporous carbons already consist of a well-developed sp2-carbon network, and the property evolution is governed by the changes in the edge sites and stacked structures.

11.
ACS Appl Mater Interfaces ; 15(34): 40397-40408, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590155

RESUMO

In lithium-oxygen batteries, although the porous carbon cathodes are widely utilized to tailor the properties of discharged Li2O2, the impact of nanopore size on the Li2O2 formation and decomposition reactions remain incompletely understood. Here, we provide the straightforward elucidation on the effect of pore size in a range of 25-200 nm, using a highly ordered porous cathode matrix based on the carbon-coated anodic aluminum oxide membrane formed on an Al substrate (C/AAO_Al). When the nanopore size is 25 nm, film-like Li2O2 with a thickness of 2-5 nm is formed, possibly via a surface-driven mechanism. When the nanochannel becomes larger, the Li2O2 film thickness saturates at ca. 10 nm, along with crystalline Li2O2 particles possibly formed by a solution-mediated mechanism.

12.
Chemistry ; 29(53): e202302594, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37607317

RESUMO

Invited for the cover of this issue are Takashi Kyotani, Tetsuji Itoh and co-workers at Tohoku University, Gunma University and AIST. The image depicts the synthesis of water-dispersible carbon nano-test tubes by using a template technique and the selective adsorption of DNA into the inner space of these test tubes. Read the full text of the article at 10.1002/chem.202301422.


Assuntos
Carbono , DNA , Humanos , Adsorção , Universidades , Água
13.
Small ; 19(47): e2301525, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37528705

RESUMO

Hierarchically porous carbon microlattices (HPCMLs) fabricated by using a composite photoresin and stereolithography (SLA) 3D printing is reported. Containing magnesium oxide nanoparticles (MgO NPs) as porogens and multilayer graphene nanosheets as UV-scattering inhibitors, the composite photoresin is formed to simple cubic microlattices with digitally designed porosity of 50%. After carbonization in vacuum at 1000 °C and chemical removal of MgO NPs, it is realized that carbon microlattices possessing hierarchical porosity are composed of the lattice architecture (≈100 µm), macropores (≈5 µm), mesopores (≈50 nm), and micropores (≈1 nm). The linear shrinkage after pyrolysis is as small as 33%. Compressive strength of 7.45 to 10.45 MPa and Young's modulus of 375 to 736 MPa are achieved, proving HPCMLs a robust mechanical component among reported carbon materials with a random pore structure. Having a few millimeters in thickness, the HPCMLs can serve as thick supercapacitor electrodes that demonstrate gravimetric capacitances 105 and 13.8 F g-1 in aqueous and organic electrolyte, reaching footprint areal capacitances beyond 10 and 1 F cm-2 , respectively. The results present that the composite photoresin for SLA can yield carbon microarchitectures that integrate structural and functional properties for structural energy storages .

14.
Chemistry ; 29(53): e202301422, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37392079

RESUMO

Water-dispersible carbon nano-test tubes (CNTTs) with an inner and outer diameter of about 25 and 35 nm, respectively, were prepared by the template technique and then their inner carbon surface was selectively oxidized to introduce carboxy groups. The adsorption behavior of DNA molecules on the oxidized CNTTs (Ox-CNTTs) was examined in the presence of Ca2+ cations. Many DNA molecules are attracted to the inner space of Ox-CNTTs based on the Ca2+ -mediated electrostatic interaction between DNA phosphate groups and carboxylate anions on the inner carbon surface. Moreover, the total net charge of the DNA adsorbed was found to be equal to the total charge of the carboxylate anions. This selective adsorption into the interior of Ox-CNTTs can be explained from the fact that the electrostatic interaction onto the inner concave surface is much stronger than that on the outer convex surface. On the other hand, the desorption of DNA easily occurs whenever Ca2+ cations are removed by washing with deionized water. Thus, each of Ox-CNTTs works well as a nano-container for a large amount of DNA molecules, thereby resulting in the occurrence of DNA enrichment in the nanospace.


Assuntos
Carbono , Água , Ânions , DNA , Cátions , Adsorção
15.
Nanoscale ; 15(23): 9954-9963, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37203995

RESUMO

Three-dimensionally ordered nanoporous structures were generated in carbon materials doped with metals and nitrogen as catalytically active sites for electrochemical reactions. Free-base and metal phthalocyanines with a strategically designed molecular structure were used as carbon sources to obtain an ordered porous structure via homogeneous self-assembly with Fe3O4 nanoparticles as the pore template and the prevention of melting away during carbonization. The doping of Fe and nitrogen was achieved by a reaction between the free-base phthalocyanine and Fe3O4 through carbonization at 550 °C, while Co and Ni were doped using the corresponding metal phthalocyanines. The preference of these three types of ordered porous carbon materials for catalytic reactions was distinctly determined by the doped metals. Fe-N-doped carbon showed the highest activity for O2 reduction. Additional heat treatment at 800 °C enhanced this activity. CO2 reduction and H2 evolution were preferred by the Ni- and Co-N-doped carbon materials, respectively. A change in the template particle size was capable of controlling the pore size to enhance mass transfer and improve performance. The technique presented in this study enabled systematic metal doping and pore size control in the ordered porous structures of carbonaceous catalysts.


Assuntos
Carbono , Nitrogênio , Carbono/química , Nitrogênio/química , Porosidade , Metais , Catálise
16.
Adv Sci (Weinh) ; 10(16): e2300268, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029464

RESUMO

The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.

17.
Sci Rep ; 12(1): 21024, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470983

RESUMO

The electrochemical properties of metal oxides are very attractive and fascinating in general, making them a potential candidate for supercapacitor application. Vanadium oxide is of particular interest because it possesses a variety of valence states and is also cost effective with low toxicity and a wide voltage window. In the present study, vanadium oxide nanorods were synthesized using a modified sol-gel technique at low temperature. Surface morphology and crystallinity studies were carried out by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. To the best of our knowledge, the as-prepared nanorods were tested with magnesium ion based polymer gel electrolyte for the first time. The prepared supercapacitor cell exhibits high capacitance values of the order of ~ 141.8 F g-1 with power density of ~ 2.3 kW kg-1 and energy density of ~ 19.1 Wh kg-1. The cells show excellent rate capability and good cycling stability.

18.
Phys Chem Chem Phys ; 24(38): 23357-23366, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36165844

RESUMO

Chemical vapor deposition of methane onto a template of alumina (Al2O3) nanoparticles is a prominent synthetic strategy of graphene meso-sponge, a new class of nano porous carbon materials consisting of single-layer graphene walls. However, the elementary steps controlling the early stages of graphene growth on Al2O3 surfaces are still not well understood. In this study, density functional theory calculations provide insights into the initial stages of graphene growth. We have modelled the mechanism of CH4 dissociation on the (111), (110), (100), and (001) γ-Al2O3 surfaces. Subsequently, we have considered the reaction pathway leading to the formation of a C6 ring. The γ-Al2O3(110) and γ-Al2O3(100) are both active for CH4 dissociation, but the (100) surface has higher catalytic activity towards the carbon growth reaction. The overall mechanism involves the formation of the reactive intermediate CH2* that then can couple to form CnH2n* (n = 2-6) intermediates with unsaturated CH2 ends. The formation of these species, which are not bound to the surface-active sites, promotes the sustained carbon growth in a nearly barrierless process. Also, the short distance between terminal carbon atoms leads to strong interactions, which might lead to the high activity between unsaturated CH2* of the hydrocarbon chain. Analysis of the electron localization and geometries of the carbon chains reveals the formation of C-Al-σ bonds with the chain growing towards the vacuum rather than C-Al-π bonds covering the γ-Al2O3(100) surface. This growth behaviour prevents catalyst poisoning during the initial stage of graphene nucleation.

19.
Chem Commun (Camb) ; 58(50): 7086-7089, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35665789

RESUMO

Microporous polymers with exposed C60 surfaces have been synthesized by a new pathway of crosslinking fullerenol and terephthaloyl chloride or 1,3,5-benzenetricarbonyl trichloride via esterification. The resulting polymers are insoluble solids containing a large ratio of C60 with hydroxy groups and possess micropores with high specific surface area up to 657 m2 g-1. The microporous polymers thus obtained exhibit enhanced hydrogen spillover, which is a unique property of the C60 surface.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35548999

RESUMO

Cryogenic electron microscopy is one of the fastest and most robust methods for capturing high-resolution images of proteins, but stringent sample preparation, imaging conditions, and in situ radiation damage inflicted during data acquisition directly affect the resolution and ability to capture dynamic details, thereby limiting its broader utilization and adoption for protein studies. We addressed these drawbacks by introducing synthesized giant carbon nano-test tubes (GCNTTs) as radiation-insulating materials that lessen the irradiation impact on the protein during data acquisition, physical molecular concentrators that localize the proteins within a nanoscale field of view, and vessels that create a microenvironment for solution-phase imaging. High-resolution electron microscopy images of single and aggregated hemoglobin molecules within GCNTTs in both solid and solution states were acquired. Subsequent scanning transmission electron microscopy, small-angle neutron scattering, and fluorescence studies demonstrated that the GCNTT vessel protected the hemoglobin molecules from electron irradiation-, light-, or heat-induced denaturation. To demonstrate the robustness of GCNTT as an imaging platform that could potentially augment the study of proteins, we demonstrated the robustness of the GCNTT technique to image an alternative protein, d-fructose dehydrogenase, after cyclic voltammetry experiments to review encapsulation and binding insights. Given the simplicity of the material synthesis, sample preparation, and imaging technique, GCNTT is a promising imaging companion for high-resolution, single, and dynamic protein studies under electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA