Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35161139

RESUMO

We report the morphology control of a nano-phase-separated structure in the photoactive layer (power generation layer) of organic-inorganic hybrid thin-film solar cells to develop highly functional electronic devices for societal applications. Organic and inorganic-organic hybrid bulk heterojunction solar cells offer several advantages, including low manufacturing costs, light weight, mechanical flexibility, and a potential to be recycled because they can be fabricated by coating them on substrates, such as films. In this study, by incorporating the carrier manager ladder polymer BBL as the third component in a conventional two-component power generation layer consisting of P3HT-the conventional polythiophene derivative and titanium alkoxide-we demonstrate that the phase-separated structure of bulk heterojunction solar cells can be controlled. Accordingly, we developed a discontinuous phase-separated structure suitable for charge transport, obtaining an energy conversion efficiency higher than that of the conventional two-component power generation layer. Titanium alkoxide is an electron acceptor and absorbs light with a wavelength lower than 500 nm. It is highly sensitive to LED light sources, including those used in homes and offices. A conversion efficiency of 4.02% under a 1000 lx LED light source was achieved. Hence, high-performance organic-inorganic hybrid bulk heterojunction solar cells with this three-component system can be used in indoor photovoltaic systems.

2.
Molecules ; 22(5)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28468327

RESUMO

Propene polymerization with isotactic (iso)-specific C2-symmetric rac-Me2Si(2-Me-Benz(e)-Ind)2ZrCl2 (1) and rac-Me2Si(2-Me-4-Ph-1-Ind)2ZrCl2 (2) were conducted under various conditions for achieving iso-specific living polymerization of propene. When Complex 1 was activated with trialkylaluminum-free modified methylaluminoxane (dMMAO) at -40 °C, the number-average molecular weight (Mn) linearly increased against the polymerization time to reach Mn = 704,000 within 15 min of polymerization, although the molecular weight distributions was broad (Mw/Mn < 3). Thus, it was found that quasi-living polymerization of propene proceeded in the 1-dMMAO system. The living nature of iso-polypropene was confirmed by the block copolymerization, where the Mn value increased from 221,000 to 382,000 after the addition of 1-octene to yield the block copolymer with a melting point of 150 °C.


Assuntos
Alcenos/química , Compostos Organometálicos/química , Polipropilenos/síntese química , Zircônio/química , Peso Molecular , Polimerização
3.
Dalton Trans ; 42(25): 9030-2, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23483093

RESUMO

The living isospecific-cis-1,4-polymerization and block-copolymerization of (E)-1,3-pentadiene with 1,3-butadiene have been achieved for the first time by using cationic half-sandwich scandium catalysts.


Assuntos
Alcadienos/síntese química , Butadienos/química , Compostos Organometálicos/química , Pentanos/síntese química , Escândio/química , Alcadienos/química , Catálise , Pentanos/química , Polimerização , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA