RESUMO
BACKGROUND: ANP (atrial natriuretic peptide), acting through NPR1 (natriuretic peptide receptor 1), provokes hypotension. Such hypotension is thought to be due to ANP inducing vasodilation via NPR1 in the vasculature; however, the underlying mechanism remains unclear. Here, we investigated the mechanisms of acute and chronic blood pressure regulation by ANP. METHODS AND RESULTS: Immunohistochemical analysis of rat tissues revealed that NPR1 was abundantly expressed in endothelial cells and smooth muscle cells of small arteries and arterioles. Intravenous infusion of ANP significantly lowered systolic blood pressure in wild-type mice. ANP also significantly lowered systolic blood pressure in smooth muscle cell-specific Npr1-knockout mice but not in endothelial cell-specific Npr1-knockout mice. Moreover, ANP significantly lowered systolic blood pressure in Nos3-knockout mice. In human umbilical vein endothelial cells, treatment with ANP did not influence nitric oxide production or intracellular Ca2+ concentration, but it did hyperpolarize the cells. ANP-induced hyperpolarization of human umbilical vein endothelial cells was inhibited by several potassium channel blockers and was also abolished under knockdown of RGS2 (regulator of G-protein signaling 2), an GTPase activating protein in G-protein α-subunit. ANP increased Rgs2 mRNA expression in human umbilical vein endothelial cells but failed to lower systolic blood pressure in Rgs2-knockout mice. Endothelial cell-specific Npr1-overexpressing mice exhibited lower blood pressure than did wild-type mice independent of RGS2, and showed dilation of arterial vessels on synchrotron radiation microangiography. CONCLUSIONS: Together, these results indicate that vascular endothelial NPR1 plays a crucial role in ANP-mediated blood pressure regulation, presumably by a mechanism that is RGS2-dependent in the acute phase and RGS2-independent in the chronic phase.
Assuntos
Fator Natriurético Atrial , Pressão Sanguínea , Receptores do Fator Natriurético Atrial , Animais , Fator Natriurético Atrial/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Knockout , Ratos , Receptores do Fator Natriurético Atrial/metabolismoRESUMO
BACKGROUND: The maternal circulatory system and hormone balance both change dynamically during pregnancy, delivery, and the postpartum period. Although atrial natriuretic peptides and brain natriuretic peptides produced in the heart control circulatory homeostasis through their common receptor, NPR1, the physiologic and pathophysiologic roles of endogenous atrial natriuretic peptide/brain natriuretic peptide in the perinatal period are not fully understood. METHODS: To clarify the physiologic and pathophysiologic roles of the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system during the perinatal period, the phenotype of female wild-type and conventional or tissue-specific Npr1-knockout mice during the perinatal period was examined, especially focusing on maternal heart weight, blood pressure, and cardiac function. RESULTS: In wild-type mice, lactation but not pregnancy induced reversible cardiac hypertrophy accompanied by increases in fetal cardiac gene mRNAs and ERK1/2 (extracellular signaling-regulated kinase) phosphorylation. Npr1-knockout mice exhibited significantly higher plasma aldosterone level than did wild-type mice, severe cardiac hypertrophy accompanied by fibrosis, and left ventricular dysfunction in the lactation period. Npr1-knockout mice showed a high mortality rate over consecutive pregnancy-lactation cycles. In the hearts of Npr1-knockout mice during or after the lactation period, an increase in interleukin-6 mRNA expression, phosphorylation of signal transducer and activator of transcription 3, and activation of the calcineurin-nuclear factor of the activated T cells pathway were observed. Pharmacologic inhibition of the mineralocorticoid receptor or neuron-specific deletion of the mineralocorticoid receptor gene significantly ameliorated cardiac hypertrophy in lactating Npr1-knockout mice. Anti-interleukin-6 receptor antibody administration tended to reduce cardiac hypertrophy in lactating Npr1-knockout mice. CONCLUSIONS: These results suggest that the characteristics of lactation-induced cardiac hypertrophy in wild-type mice are different from exercise-induced cardiac hypertrophy, and that the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system plays an important role in protecting the maternal heart from interleukin-6-induced inflammation and remodeling in the lactation period, a condition mimicking peripartum cardiomyopathy.
Assuntos
Fator Natriurético Atrial/deficiência , Cardiomegalia/metabolismo , Lactação , Sistema de Sinalização das MAP Quinases , Período Periparto , Receptores do Fator Natriurético Atrial/deficiência , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Feminino , Camundongos , Camundongos KnockoutRESUMO
The usefulness of ultrasound molecular imaging with αvß3 integrin-targeted microbubbles for detecting tumor angiogenesis has been demonstrated. Recently, we developed αvß3 integrin-targeted microbubbles by modifying clinically available microbubbles (Sonazoid, Daiichi-Sankyo Pharmaceuticals, Tokyo, Japan) with a secreted glycoprotein (lactadherin). The aims of our present study were to simplify the preparation of lactadherin-bearing Sonazoid and to examine the diagnostic utility of lactadherin-bearing Sonazoid for αvß3 integrin-expressing tumor vessels by using SK-OV-3-tumor-bearing mice. By incubating 1.2 × 107 Sonazoid microbubbles with 1.0 µg lactadherin, the complicated washing and centrifugation steps during the microbubble preparation could be omitted with no significant reduction in labeling ratio of lactadherin-bearing Sonazoid. In addition, the number of Sonazoid microbubbles accumulated in the SK-OV-3 tumor was significantly increased by modifying Sonazoid with lactadherin. Our data suggest that the lactadherin-bearing Sonazoid is an easily prepared and potentially clinically translatable targeted microbubble for αvß3 integrin-expressing vessels.
Assuntos
Meios de Contraste , Aumento da Imagem/métodos , Integrina alfaVbeta3 , Microbolhas , Neoplasias Ovarianas/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Compostos Férricos , Ferro , Camundongos , Camundongos Endogâmicos BALB C , Óxidos , Reprodutibilidade dos TestesRESUMO
RATIONALE: An increase of severe ischemic heart diseases results in an increase of the patients with congestive heart failure (CHF). Therefore, new therapies are expected in addition to recanalization of coronary arteries. Previous clinical trials using natriuretic peptides (NPs) prove the improvement of CHF by NPs. OBJECTIVE: We aimed at investigating whether OSTN (osteocrin) peptide potentially functioning as an NPR (NP clearance receptor) 3-blocking peptide can be used as a new therapeutic peptide for treating CHF after myocardial infarction (MI) using animal models. METHODS AND RESULTS: We examined the effect of OSTN on circulation using 2 mouse models; the continuous intravenous infusion of OSTN after MI and the OSTN-transgenic (Tg) mice with MI. In vitro studies revealed that OSTN competitively bound to NPR3 with atrial NP. In both OSTN-continuous intravenous infusion model and OSTN-Tg model, acute inflammation within the first week after MI was reduced. Moreover, both models showed the improvement of prognosis at 28 days after MI by OSTN. Consistent with the in vitro study binding of OSTN to NPR3, the OSTN-Tg exhibited an increased plasma atrial NP and C-type NP, which might result in the improvement of CHF after MI as indicated by the reduced weight of hearts and lungs and by the reduced fibrosis. CONCLUSIONS: OSTN might suppress the worsening of CHF after MI by inhibiting clearance of NP family peptides.
Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Proteínas Musculares/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Fatores de Transcrição/uso terapêutico , Animais , Fator Natriurético Atrial/metabolismo , Células HEK293 , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Ligação Proteica , Receptores do Fator Natriurético Atrial/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) bind to the receptor guanylyl cyclase (GC)-A, leading to diuresis, natriuresis, and blood vessel dilation. In addition, ANP and BNP have various angiogenic properties in ischemic tissue. When breeding mice devoid of GC-A, we noted significant skewing of the Mendelian ratio in the offspring, suggesting embryonic lethality due to knockout of GC-A. Consequently, we here investigated the roles of endogenous ANP and BNP in embryonic neovascularization and organ morphogenesis. Embryos resulting from GC-A(-/-) × GC-A(+/-) crosses developed hydrops fetalis (HF) beginning at embryonic day (E)14.5. All embryos with HF had the genotype GC-A(-/-). At E17.5, 33.3% (12 of 36) of GC-A(-/-) embryos had HF, and all GC-A(-/-) embryos with HF were dead. Beginning at E16.0, HF-GC-A(-/-) embryos demonstrated poorly developed superficial vascular vessels and sc hemorrhage, the fetal side of the placenta appeared ischemic, and vitelline vessels on the yolk sac were poorly developed. Furthermore, HF-GC-A(-/-) embryos also showed abnormal constriction of umbilical cord vascular vessels, few cardiac trabeculae and a thin compact zone, hepatic hemorrhage, and poor bone development. Electron microscopy of E16.5 HF-GC-A(-/-) embryos revealed severe vacuolar degeneration in endothelial cells, and the expected 3-layer structure of the smooth muscle wall of the umbilical artery was indistinct. These data demonstrate the importance of the endogenous ANP/BNP-GC-A system not only in the neovascularization of ischemic tissues but also in embryonic vascular development and organ morphogenesis.
Assuntos
Fator Natriurético Atrial/metabolismo , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeo Natriurético Encefálico/metabolismo , Neovascularização Fisiológica , Organogênese , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Fator Natriurético Atrial/genética , Células Cultivadas , Cruzamentos Genéticos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/patologia , Embrião de Mamíferos/ultraestrutura , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Hidropisia Fetal/veterinária , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Peptídeo Natriurético Encefálico/genética , Gravidez , Receptores do Fator Natriurético Atrial/agonistas , Receptores do Fator Natriurético Atrial/deficiência , Receptores do Fator Natriurético Atrial/genética , Transdução de SinaisRESUMO
Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1ß and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway.
Assuntos
Cardiomegalia/metabolismo , Colinérgicos , Grelina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pressão Ventricular/fisiologia , Análise de Variância , Animais , Derivados da Atropina/farmacologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Grelina/metabolismo , Camundongos , Camundongos Knockout , Nicotina/farmacologia , Distribuição Aleatória , Valores de Referência , Transdução de Sinais/fisiologiaRESUMO
Fluorescence microscopy is used extensively in cell-biological and biomedical research, but it is often plagued by three major problems with the presently available fluorescent probes: photobleaching, blinking, and large size. We have addressed these problems, with special attention to single-molecule imaging, by developing biocompatible, red-emitting silicon nanocrystals (SiNCs) with a 4.1-nm hydrodynamic diameter. Methods for producing SiNCs by simple chemical etching, for hydrophilically coating them, and for conjugating them to biomolecules precisely at a 1:1 ratio have been developed. Single SiNCs neither blinked nor photobleached during a 300-min overall period observed at video rate. Single receptor molecules in the plasma membrane of living cells (using transferrin receptor) were imaged for ≥10 times longer than with other probes, making it possible for the first time to observe the internalization process of receptor molecules at the single-molecule level. Spatial variations of molecular diffusivity in the scale of 1-2 µm, i.e., a higher level of domain mosaicism in the plasma membrane, were revealed.
Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes , Teste de Materiais , Imagem Molecular , Nanopartículas/química , Receptores da Transferrina/análise , Silício/química , Membrana Celular/metabolismo , Humanos , Microscopia de Fluorescência , Modelos Biológicos , Nanotecnologia , Fotodegradação , Receptores da Transferrina/metabolismoRESUMO
The molecular density of an aminosilane self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPS) by a vapor phase method has been estimated to be about 3 AEAPS molecules per nm(2) based on chemical labeling, optical absorption spectroscopy and X-ray photoelectron spectroscopy.
Assuntos
Diaminas/química , Gases/química , Silanos/química , Espectroscopia Fotoeletrônica , Ácido Trinitrobenzenossulfônico/químicaRESUMO
The bio-nanocapsules (BNCs) composed of the recombinant envelope L-protein of hepatitis B virus constitute efficient delivery vectors specifically targeting human hepatocytes. Here, we have tried to enhance the stability of the BNCs because the L-proteins in the BNCs were aggregated due to random disulfide bridging when stored for a long period at 4 degrees C. The envelope protein contains fourteen cysteine residues in the S domain. Aggregation of the envelope proteins might be avoided if unessential cysteine residues are replaced or removed because the irreversible alkylation of the free sulfhydryl group protects against the aggregation and enhances the efficiency of encapsulation. In this study, the possibility of reducing the number of cysteine residues in the S domain to enhance the stability of the BNCs was assessed. The replacement of each cysteine residue by site-directed mutation showed that nine of fourteen cysteine residues were not essential to obtaining BNCs secreted into the culture media. Furthermore, upon evaluating the combination of these mutations, it was found that eight residues of replacement were acceptable. The mutant BNCs with replaced eight cysteine residues were not only more resistant against trypsin, but also more effective in transducing genes into human hepatoma-derived HepG2 cells than the original type BNC. Thus, we demonstrated that the minimized number of cysteine residues in the S domain could enhance the stability of the BNCs.