Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477422

RESUMO

Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.

2.
Pharmaceutics ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182398

RESUMO

Visualizing biological events and states to resolve biological questions is challenging. Tissue clearing permits three-dimensional multicolor imaging. Here, we describe a pH-adjustable tissue clearing solution, Seebest (SEE Biological Events and States in Tissues), which preserves lipid ultrastructures at an electron microscopy level. Adoption of polyethylenimine was required for a wide pH range adjustment of the tissue clearing solution. The combination of polyethylenimine and urea had a good tissue clearing ability for multiple tissues within several hours. Blood vessels stained with lipophilic carbocyanine dyes were deeply visible using the solution. Adjusting the pH of the solution was important to maximize the fluorescent intensity and suppress dye leakage during tissue clearing. The spatial distribution of doxorubicin and oxidative stress were observable using the solution. Moreover, spatial distribution of liposomes in the liver was visualized. Hence, the Seebest solution provides pH-adjustable, rapid, sufficient tissue clearing, while preserving lipid ultrastructures, which is suitable for drug delivery system evaluations.

3.
Front Pharmacol ; 11: 363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300298

RESUMO

Recent research has revealed that nanobubbles (NBs) can be an effective tool for gene transfection in conjunction with therapeutic ultrasound (US). However, an approach to apply commercially available hand-held diagnostic US scanners for this purpose has not been evaluated as of now. In the present study, we first compared in vitro, the efficiency of gene transfer (pCMV-Luciferase) with lipid-based and albumin-based NBs irradiated by therapeutic US (1MHz, 5.0 W/cm2) in oral squamous carcinoma cell line HSC-2. Secondly, we similarly examined if gene transfer in mice is possible using a clinical hand-held US scanner (2.3MHz, MI 1.0). Results showed that lipid-based NBs induced more gene transfection compared to albumin-based NBs, in vitro. Furthermore, significant gene transfer was also obtained in mice liver with lipid-based NBs. Sub-micro sized bubbles proved to be a powerful gene transfer reagent in combination with conventional hand-held ultrasonic diagnostic device.

4.
Pharmaceutics ; 11(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121989

RESUMO

In the present study, we developed a sonoporation system, namely "direct sonoporation", for transfecting the peritoneum from a defined surface area to avoid systematic side effects. Here, the transfection characteristics are explained because there is less information about direct sonoporation. Naked pDNA and nanobubbles were administered to diffusion cell attached to the visceral and parietal peritoneum from the liver and peritoneal wall surface, respectively. Then, ultrasound was irradiated. Direct sonoporation showed a higher transfection efficacy at the applied peritoneum site from the liver surface while other sites were not detected. Moreover, transgene expression was observed in the peritoneal mesothelial cells (PMCs) at the applied peritoneum site. No abnormality was observed in the inner part of the liver. Although transgene expression of the visceral peritoneum was tenfold higher than that of the parietal peritoneum, transgene expression was observed in the PMCs on both the applied peritoneum sites. These results suggest that direct sonoporation is a site-specific transfection method of the PMCs on the applied peritoneum site without transgene expression at other sites and show little toxicity in the inner tissues at the applied site via cavitation energy. This information is valuable for the development of an intraperitoneal sonoporation device for treatment of peritoneal diseases such as peritoneal fibrosis.

5.
AAPS PharmSciTech ; 20(1): 5, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30560477

RESUMO

Vancomycin (VCM) is an important antibiotic for treating methicillin-resistant Staphylococcus aureus (MRSA) infections. To treat bacterial meningitis caused by MRSA, it is necessary to deliver VCM into the meninges, but the rate of VCM translocation through the blood-brain barrier is poor. Additionally, high doses of intravascularly (i.v.) administered VCM may cause renal impairments. Thus, VCM is sometimes administered intracerebroventricularly (i.c.v.) for clinical treatment. However, information on the VCM pharmacokinetics in cerebrospinal fluid (CSF) after i.c.v. administration is lacking. In the present study, we evaluated the VCM pharmacokinetics in the CSF and systemic circulation after i.c.v. compared to that after i.v. administration, using the brain microdialysis method in mice. VCM administered via i.c.v. showed a highly selective distribution in the CSF, without migration to systemic circulation. Moreover, to assess renal impairments after i.c.v. administration of VCM, we histologically evaluated damage to the mouse kidney by hematoxylin and eosin staining. No significant morphological change in the kidney was observed in the i.c.v. administration group compared to that in the i.v. administration group. Our results demonstrate that i.c.v. administration of VCM can be partially prevented from entering the systemic circulation to prevent renal impairments caused by VCM.


Assuntos
Antibacterianos/líquido cefalorraquidiano , Encéfalo/metabolismo , Microdiálise/métodos , Vancomicina/líquido cefalorraquidiano , Animais , Injeções Intraventriculares , Masculino , Camundongos , Vancomicina/administração & dosagem
6.
Drug Deliv ; 24(1): 737-744, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28446052

RESUMO

In this study, we demonstrate the low toxicity and highly efficient and spatially improved transfection of plasmid DNA (pDNA) with liposomal nanobubbles (bubble liposomes [BLs]) using ultrasound (US) irradiation in mice. Naked pDNA with BLs was intraperitoneally injected, followed by US irradiation. The injection volume, the duration of US irradiation, and the dose of BLs were optimized. Both BLs and US irradiation were essential to achieve high transgene expression from naked pDNA. We observed transgene expression in the entire peritoneal tissues, including the peritoneal wall, liver, spleen, stomach and small and large intestines. The area of transfection could be controlled with focused US irradiation. There were few changes in the morphology of the peritoneum, the peritoneal function or serum alanine aminotransferase levels, suggesting the safety of BLs with US irradiation. Using a tissue-clearing method, the spatial distribution of transgene expression was evaluated. BLs with US irradiation delivered pDNA to the submesothelial layer in the peritoneal wall, whereas transgene expression was restricted to the surface layer in the liver and stomach. Therefore, BLs with US irradiation could be an effective and safe method of gene transfection to the peritoneum.


Assuntos
Nanoestruturas , Animais , DNA , Técnicas de Transferência de Genes , Lipossomos , Camundongos , Plasmídeos , Baço , Transfecção , Ultrassom
7.
PLoS One ; 11(1): e0148233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824850

RESUMO

Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 µm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.


Assuntos
Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional/métodos , Fígado/metabolismo , Imagem Molecular/métodos , Plasmídeos/farmacocinética , Transgenes , Animais , Formaldeído/química , Formamidas/química , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Rim/metabolismo , Rim/ultraestrutura , Fígado/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pulmão/metabolismo , Pulmão/ultraestrutura , Masculino , Camundongos , Octoxinol/química , Especificidade de Órgãos , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoglicóis/química , Fixação de Tecidos , Transfecção , Ureia/química , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA