Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289779

RESUMO

Transposition of transposable elements affect expression levels, splicing and epigenetic status, and function of genes located in, or near, the inserted/excised locus. For example, in grape, presence of the Gret1 retrotransposon in the promoter region of the VvMYBA1a allele at the VvMYBA1 locus suppress the expression of the VvMYBA1 transcription factor gene for the anthocyanin biosynthesis and this transposon insertion is responsible for the green berry skin color of Vitis labrascana, 'Shine Muscat', a major grape cultivar in Japan. To prove that transposons in grape genome can be removed by genome editing, we focused on Gret1 in the VvMYBA1a allele as a target of CRISPR/Cas9 mediated transposon removal. PCR amplification and sequencing detected Gret1 eliminated cells in 19 of 45 transgenic plants. Although we have not yet confirmed any effects on grape berry skin color, we were successful in demonstrating that cleaving the long terminal repeat (LTR) present at both ends of Gret1 can efficiently eliminate the transposon.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Pigmentação da Pele , Frutas/genética , Frutas/metabolismo , Retroelementos/genética , Sistemas CRISPR-Cas , Omã , Antocianinas/genética , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 110(3): 720-734, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122338

RESUMO

Pineapple (Ananas comosus (L.) Merr.) is one of the most economically important tropical fruit species. The major aim of the breeding programs in several countries, including Japan, is quality improvement, mainly for the fresh market. 'Yugafu', a Japanese cultivar with distinctive pipe-type leaf margin phenotype and white flesh color, is popular for fresh consumption. Therefore, genome sequencing of 'Yugafu' is expected to assist pineapple breeding. Here, we developed a haplotype-resolved assembly for the heterozygous genome of 'Yugafu' using long-read sequencing technology and obtained a pair of 25 pseudomolecule sequences inherited from the parental accessions 'Cream pineapple' and 'HI101'. The causative genes for leaf margin and fruit flesh color were identified. Fine mapping revealed a 162-kb region on CLG23 for the leaf margin phenotype. In this region, 20 kb of inverted repeat was specifically observed in the 'Cream pineapple' derived allele, and the WUSCHEL-related homeobox 3 (AcWOX3) gene was predicted as the key gene for leaf margin morphogenesis. Dominantly repressed AcWOX3 via RNAi was suggested to be the cause of the pipe-type leaf margin phenotype. Quantitative trait locus (QTL) analysis revealed that the terminal region of CLG08 contributed to white flesh and low carotenoid content. Carotenoid cleaved dioxygenase 4 (AcCCD4), a key gene for carotenoid degradation underlying this QTL, was predicted as the key gene for white flesh color through expression analysis. These findings could assist in modern pineapple breeding and facilitate marker-assisted selection for important traits.


Assuntos
Ananas , Ananas/genética , Frutas/genética , Haplótipos/genética , Fenótipo , Folhas de Planta/genética
3.
Hortic Res ; 8(1): 49, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642580

RESUMO

Haplotypes provide useful information for genomics-based approaches, genomic prediction, and genome-wide association study. As a small number of superior founders have contributed largely to the breeding history of fruit trees, the information of founder haplotypes may be relevant for performing the genomics-based approaches in these plants. In this study, we proposed a method to estimate 14 haplotypes from 7 founders and automatically trace the haplotypes forward to apple parental (185 varieties) and breeding (659 F1 individuals from 16 full-sib families) populations based on 11,786 single-nucleotide polymorphisms, by combining multiple algorithms. Overall, 92% of the single-nucleotide polymorphisms information in the parental and breeding populations was characterized by the 14 founder haplotypes. The use of founder haplotype information improved the accuracy of genomic prediction in 7 traits and the resolution of genome-wide association study in 13 out of 27 fruit quality traits analyzed in this study. We also visualized the significant propagation of the founder haplotype with the largest genetic effect in genome-wide association study over the pedigree tree of the parental population. These results suggest that the information of founder haplotypes can be useful for not only genetic improvement of fruit quality traits in apples but also for understanding the selection history of founder haplotypes in the breeding program of Japanese apple varieties.

4.
Plant Biotechnol (Tokyo) ; 37(2): 163-170, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32821223

RESUMO

Apple is one of precious fruit crop grown in temperate zone. In the post genomic era, the analysis of gene functions in horticultural crops such as apple is required for agricultural utilization. For analysis of such crops, the protocol establishment of tissue culture and transformation is essential. Although transformation efficiency in family Rosaceae is generally very low, some cultivars of Malus species have high transformation ability. Apple cultivars are usually clonally propagated by grafting on rootstocks, which can affect fruit quality and maturity and scion productivity. Apple rootstock cultivar Japan Morioka 2 (JM2) was produced at the Division of Apple Research, Institute of Fruit and Tea Science, NARO, in Japan. JM2, which was developed for dwarfing scions and improving disease resistance, is easily propagated by hardwood cutting. Furthermore, JM2 can be stably transformed at a high efficiency, which is better than other JM series rootstocks derived from the same parent. Leaflets of cultured shoots of JM2 have been transformed using Agrobacterium (Rhizobium) with a transducing gene. In this article, the JM2 transformation protocol is introduced in detail. Various genes and promoters have been confirmed to function as expected, with the resultant transformants exhibiting specific staining and fluorescent signals, and modified floral organ shapes, precious blooming and other characteristics. JM2 is thus a useful rootstock material for the enhancement of genetic research on apple and its relatives.

5.
Breed Sci ; 70(3): 415-421, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714066

RESUMO

Simple sequence repeat (SSR) markers provide a reliable tool for the identification of accessions and the construction of genetic linkage maps because of their co-dominant inheritance. In the present study, we developed new SSR markers with next-generation sequencing using the Roche 454 GS FLX+ platform. Five hundred SSR primer sets were tested for the genetic identification of pineapple, including 100 each for the di-, tri-, tetra-, penta-, and hexa-nucleotide motif SSRs. In total, 160 SSR markers successfully amplified fragments and exhibited polymorphism among accessions. The SSR markers revealed the number of alleles per locus (ranging from 2 to 13), the expected heterozygosity (ranging from 0.041 to 0.823), and the observed heterozygosity (ranging from 0 to 0.875). A total of 117 SSR markers with tri- or greater nucleotide motifs were shown to be effective at facilitating accurate genotyping. Using the SSR markers, 25 accessions were distinguished genetically, with the exception of accessions 'MD-2' and 'Yonekura'. The developed SSR markers could facilitate the establishment of efficient and accurate genetic identification systems and the construction of genetic linkage maps in the future.

6.
Sci Rep ; 9(1): 18922, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831861

RESUMO

Japanese pear (Pyrus pyrifolia) is a major fruit tree in the family Rosaceae and is bred for fruit production. To promote the development of breeding strategies and molecular research for Japanese pear, we sequenced the transcripts of Japanese pear variety 'Hosui'. To exhaustively collect information of total gene expression, RNA samples from various organs and stages of Japanese pear were sequenced by three technologies, single-molecule real-time (SMRT) sequencing, 454 pyrosequencing, and Sanger sequencing. Using all those reads, we determined comprehensive reference sequences of Japanese pear. Then, their protein sequences were predicted, and biological functional annotations were assigned. Finally, we developed a web database, TRANSNAP (http://plantomics.mind.meiji.ac.jp/nashi), which is the first web resource of Japanese pear omics information. This database provides highly reliable information via a user-friendly web interface: the reference sequences, gene functional annotations, and gene expression profiles from microarray experiments. In addition, based on sequence comparisons among Japanese, Chinese and European pears, similar protein sequences among the pears and species-specific proteins in Japanese pear can be quickly and efficiently identified. TRANSNAP will aid molecular research and breeding in Japanese pear, and its information is available for comparative analysis among other pear species and families.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Pyrus , Transcriptoma , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Pyrus/genética , Pyrus/metabolismo
7.
Breed Sci ; 69(3): 410-419, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598073

RESUMO

Apple is an economically important crop, and various approaches to genetic analysis in breeding programs have been attempted, including the production of doubled haploid (DH) lines, which are genetically homozygous. In this study, we used a DH line for QTL analyses, for the first time in a fruit tree, expecting it to simplify the analysis of the inheritance of quantitative traits and thus to enhance QTL detection power. Using an F1 population from 'Prima' × 'Apple Chukanbohon 95P6' (DH), we constructed a genetic map of 'Prima', and identified 19 QTLs for 13 traits. These QTLs had comparatively high LOD scores and explained a large part of the variation of the phenotypes. In particular, acidity, juice browning, and skin splitting clearly segregated at a 1:1 ratio, consistent with the segregation of the alleles at the detected QTLs in linkage group 16; these traits appeared to be regulated by single genes, despite general consideration that they are quantitative traits. Using this simple genetic composition of the F1 population, we concluded that the skin splitting of apple fruit has recessive inheritance, and that the allele for splitting is tightly linked with those for high acidity and low juice browning in 'Prima'.

8.
Nat Protoc ; 13(12): 2844-2863, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30390050

RESUMO

The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs takes as little as 2-3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Malus/genética , Mutagênese , Vitis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma de Planta , Mutação , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética
9.
Breed Sci ; 66(4): 499-515, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795675

RESUMO

'Fuji' is one of the most popular and highly-produced apple cultivars worldwide, and has been frequently used in breeding programs. The development of genotypic markers for the preferable phenotypes of 'Fuji' is required. Here, we aimed to define the haplotypes of 'Fuji' and find associations between haplotypes and phenotypes of five traits (harvest day, fruit weight, acidity, degree of watercore, and flesh mealiness) by using 115 accessions related to 'Fuji'. Through the re-sequencing of 'Fuji' genome, total of 2,820,759 variants, including single nucleotide polymorphisms (SNPs) and insertions or deletions (indels) were detected between 'Fuji' and 'Golden Delicious' reference genome. We selected mapping-validated 1,014 SNPs, most of which were heterozygous in 'Fuji' and capable of distinguishing alleles inherited from the parents of 'Fuji' (i.e., 'Ralls Janet' and 'Delicious'). We used these SNPs to define the haplotypes of 'Fuji' and trace their inheritance in relatives, which were shown to have an average of 27% of 'Fuji' genome. Analysis of variance (ANOVA) based on 'Fuji' haplotypes identified one quantitative trait loci (QTL) each for harvest time, acidity, degree of watercore, and mealiness. A haplotype from 'Delicious' chr14 was considered to dominantly cause watercore, and one from 'Ralls Janet' chr1 was related to low-mealiness.

10.
Sci Rep ; 6: 31481, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530958

RESUMO

Genome editing is a powerful technique for genome modification in molecular research and crop breeding, and has the great advantage of imparting novel desired traits to genetic resources. However, the genome editing of fruit tree plantlets remains to be established. In this study, we describe induction of a targeted gene mutation in the endogenous apple phytoene desaturase (PDS) gene using the CRISPR/Cas9 system. Four guide RNAs (gRNAs) were designed and stably transformed with Cas9 separately in apple. Clear and partial albino phenotypes were observed in 31.8% of regenerated plantlets for one gRNA, and bi-allelic mutations in apple PDS were confirmed by DNA sequencing. In addition, an 18-bp gRNA also induced a targeted mutation. These CRIPSR/Cas9 induced-mutations in the apple genome suggest activation of the NHEJ pathway, but with some involvement also of the HR pathway. Our results demonstrate that genome editing can be practically applied to modify the apple genome.


Assuntos
Sistemas CRISPR-Cas , Quimera , Edição de Genes/métodos , Genoma de Planta , Malus/genética , Melhoramento Vegetal/métodos
11.
Breed Sci ; 66(2): 271-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162498

RESUMO

Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar 'Kinchaku' (Aki gene) at the top of linkage group 11, similar to the positions of the susceptibility genes Ani in 'Osa Nijisseiki' and Ana in 'Nansui'. Using synteny-based marker enrichment, we developed novel apple SSR markers in the target region. We constructed a fine map of linkage group 11 of 'Kinchaku' and localized the Aki locus within a 1.5-cM genome region between SSR markers Mdo.chr11.28 and Mdo.chr11.34. Marker Mdo.chr11.30 co-segregated with Aki in all 621 F1 plantlets of a 'Housui' × 'Kinchaku' cross. The physical size of the Aki region, which includes three markers (Mdo.chr11.28, Mdo.chr11.30, and Mdo.chr11.34), was estimated to be 250 Kb in the 'Golden Delicious' apple genome and 107 Kb in the 'Dangshansuli' Chinese pear genome. Our results will help to identify the candidate gene for susceptibility to black spot disease in Japanese pear.

12.
Plant Biotechnol (Tokyo) ; 33(5): 403-407, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31275001

RESUMO

The recent developments of transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) have expanded plant breeding technology. One technical issue related to the current genome editing process is residual transgenes for TALEN and CRISPR/Cas9 left in plant genomes after the editing process. Here, we aim to add transient kanamycin resistance into apple leaf cells by introducing neomycin phosphotransferase II (NPTII) into apple leaf cells using the fusion peptide system. At 75 mg/L of kanamycin for 2 days, apple JM1 leaf cells infiltrated with NPTII could be selected. Thus, we successfully demonstrated the first transient selection system of plant cells using a fusion peptide-mediated protein delivery system.

13.
Breed Sci ; 65(3): 208-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175617

RESUMO

Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S (1)-S (9) and S (k)) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S (1)/S (1)-S (9)/S (9) and S (4sm)/S (4sm)) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs.

14.
Breed Sci ; 64(3): 240-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320559

RESUMO

Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars 'Orin' and 'Akane' using F1 seedlings derived from a cross between these cultivars. The 'Orin' map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the 'Akane' map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by 'Akane' are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose.

15.
Breed Sci ; 64(4): 351-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25914590

RESUMO

Using an F1 population from a cross between Japanese pear (Pyrus pyrifolia Nakai) cultivars 'Akiakari' and 'Taihaku', we performed quantitative trait locus (QTL) analysis of seven fruit traits (harvest time, fruit skin color, flesh firmness, fruit weight, acid content, total soluble solids content, and preharvest fruit drop). The constructed simple sequence repeat-based genetic linkage map of 'Akiakari' consisted of 208 loci and spanned 799 cM; that of 'Taihaku' consisted of 275 loci and spanned 1039 cM. Out of significant QTLs, two QTLs for harvest time, one for fruit skin color, and one for flesh firmness were stably detected in two successive years. The QTLs for harvest time were located at the bottom of linkage group (LG) Tai3 (nearest marker: BGA35) and at the top of LG Tai15 (nearest markers: PPACS2 and MEST050), in good accordance with results of genome-wide association study. The PPACS2 gene, a member of the ACC synthase gene family, may control harvest time, preharvest fruit drop, and fruit storage potential. One major QTL associated with fruit skin color was identified at the top of LG 8. QTLs identified in this study would be useful for marker-assisted selection in Japanese pear breeding programs.

16.
Gene ; 528(2): 183-94, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23891821

RESUMO

We cloned 10 Japanese pear (Pyrus pyrifolia) MIKC-type II MADS-box genes, and analyzed their expression during fruit development and ripening. PpMADS2-1 was APETALA (AP)1-like; PpMADS3-1 was FRUITFULL (FUL)/SQUAMOSA (SQUA)-like; PpMADS4-1 was AGAMOUS-like (AGL)6; PpMADS5-1 and PpMADS8-1 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC)-like; PpMADS9-1, PpMADS12-1, PpMADS14-1 and PpMADS16-1 were SEPALLATA (SEP)-like; while PpMADS15-1 was AGL/SHATTERPROOF (SHP)-like. Phylogenetic analysis showed their grouping into five major clades (and 10 sub-clades) that was consistent with their diverse functional types. Expression analysis in flower tissue revealed their distinct putative homeotic functional classes: A-class (PpMADS2-1, PpMADS3-1, PpMADS4-1, and PpMADS14-1), C-class (PpMADS15-1), E-class (PpMADS9-1, PpMADS12-1, and PpMADS16-1) and E (F)-class (PpMADS5-1 and PpMADS8-1). Differential gene expression was observed in different fruit tissues (skin, cortex and core) as well as in the cortex during the course of fruit development and ripening. Collectively, our results suggest their involvement in the diverse aspects of plant development including flower development and the course of fruit development and ripening.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Pyrus/genética , Clonagem Molecular , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Expressão Gênica , Proteínas de Domínio MADS/metabolismo , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/metabolismo , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
17.
Breed Sci ; 62(1): 53-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23136514

RESUMO

We developed retrotransposon-based insertional polymorphism (RBIP) markers based on the long terminal repeat (LTR) sequences of copia-like retrotransposon Ppcrt4 and flanking genome sequences, which were derived from 454 sequencing data from Japanese pear (Pyrus pyrifolia) 'Hosui'. Out of 40 sequences including both LTR and flanking genome regions, we developed 22 RBIP markers and used them for DNA profiling of 80 pear cultivars: 64 Japanese, 10 Chinese (Pyrus ussuriensis) and 6 European (Pyrus communis). Three RBIP markers were enough to differentiate 'Hosui' from the other Japanese pear cultivars. The 22 RBIP markers could also distinguish 61 of the 64 Japanese pear cultivars. European pears showed almost no amplification of the 22 RBIP markers, which might suggest that retrotransposons had transposed during Asian pear evolution or reflect the genetic relationship between Asian and European pears. Sixteen of the RBIP markers could be positioned on a genetic linkage map of 'Hosui'. The RBIP loci were distributed in 10 linkage groups, and some loci were very closely located within the same linkage group. The information obtained will be applicable to developing cultivar-specific RBIP marker sets in plants.

18.
BMC Genomics ; 13: 292, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747974

RESUMO

BACKGROUND: Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. RESULTS: We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. CONCLUSIONS: We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.


Assuntos
Dianthus/genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Regiões 3' não Traduzidas , Antocianinas/biossíntese , Antocianinas/genética , Arabidopsis/genética , Carotenoides/genética , Carotenoides/metabolismo , Clorofila/genética , Clorofila/metabolismo , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas , Repetições de Microssatélites , RNA de Plantas/genética
19.
Breed Sci ; 62(4): 352-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23341750

RESUMO

We developed 18 polymorphic simple sequence repeat (SSR) markers in pineapple (Ananas comosus) by using genomic libraries enriched for GA and CA motifs. The markers were used to genotype 31 pineapple accessions, including seven cultivars and 11 breeding lines from Okinawa Prefecture, 12 foreign accessions and one from a related species. These SSR loci were highly polymorphic: the 31 accessions contained three to seven alleles per locus, with an average of 4.1. The values of expected heterozygosity ranged from 0.09 to 0.76, with an average of 0.52. All 31 accessions could be successfully differentiated by the 18 SSR markers, with the exception of 'N67-10' and 'Hawaiian Smooth Cayenne'. A single combination of three markers TsuAC004, TsuAC010 and TsuAC041, was enough to distinguish all accessions with one exception. A phenogram based on the SSR genotypes did not show any distinct groups, but it suggested that pineapples bred in Japan are genetically diversed. We reconfirmed the parentage of 14 pineapple accessions by comparing the SSR alleles at 17 SSR loci in each accession and its reported parents. The obtained information will contribute substantially to protecting plant breeders' rights.

20.
BMC Res Notes ; 2: 182, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19747407

RESUMO

BACKGROUND: Comparative genome mapping determines the linkage between homologous genes of related taxa. It has already been used in plants to characterize agronomically important genes in lesser studied species, using information from better studied species. In the Maloideae sub-family, which includes fruit species such as apple, pear, loquat and quince, genome co-linearity has been suggested between the genera Malus and Pyrus; however map comparisons are incomplete to date. FINDINGS: Genetic maps for the apple rootstocks 'Malling 9' ('M.9') (Malus x domestica) and 'Robusta 5' ('R5') (Malus x robusta), and pear cultivars 'Bartlett' and 'La France' (Pyrus communis) were constructed using Simple Sequence Repeat (SSR) markers developed from both species, including a new set of 73 pear Expressed Sequence Tag (EST) SSR markers. Integrated genetic maps for apple and pear were then constructed using 87 and 131 SSR markers in common, respectively.The genetic maps were aligned using 102 markers in common, including 64 pear SSR markers and 38 apple SSR markers. Of these 102 markers, 90 anchor markers showed complete co-linearity between the two genomes. CONCLUSION: Our alignment of the genetic maps of two Malus cultivars of differing species origin with two Pyrus communis cultivars confirms the ready transferability of SSR markers from one genus to the other and supports a high level of co-linearity within the sub-family Maloideae between the genomes of Malus and Pyrus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA