Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 128, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867063

RESUMO

Dissipative structures often appear as an unstable counterpart of ordered structures owing to fluctuations that do not form a homogeneous phase. Even a multiphase mixture may simultaneously undergo one chemical reaction near equilibrium and another one that is far from equilibrium. Here, we observed in real time crystal seed formation and simultaneous nanocrystal aggregation proceeding from CeIV complexes to CeO2 nanoparticles in an acidic aqueous solution, and investigated the resultant hierarchical nanoarchitecture. The formed particles exhibited two very different size ranges, resulting in further pattern formation with opalescence. The hierarchically assembled structures in solutions were CeO2 colloids, viz. primary core clusters (1-3 nm) of crystalline ceria and secondary clusters (20-30 nm) assembled through surface ions. Such self-assembly is widespread in multi-component complex fluids, paradoxically moderating hierarchical reactions. Stability and instability are not only critical but also complementary for co-optimisation around the nearby free energy landscape prior to bifurcation.

2.
J Appl Crystallogr ; 56(Pt 2): 461-467, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37032963

RESUMO

The hierarchical structures of poly(styrene-ran-butadiene) (SBR) rubber/carbon black (CB) systems vulcanized with sulfur and ZnO have been clarified using anomalous small-angle X-ray scattering (ASAXS) near the Zn absorption edge. In the case of SBR/CB systems vulcanized with peroxide, it has been found previously that the hierarchical structures formed by CB consist of aggregates of primary particles and agglomerates of those aggregates with mass-fractal dimensions. However, to date the hierarchical structures in SBR/CB systems vulcanized with sulfur and ZnO have not been well investigated, despite being commonly used. This is because the strong scattering contrast of Zn prevents the quantitative analyses of the hierarchical structures of CB using X-ray scattering. In this study, the effects of Zn on the scattering intensity were eliminated and the structure factors of CB in SBR/CB systems were obtained using the ASAXS method. By extrapolating to the zero volume fraction of CB, the particle structure factor of the CB aggregates was estimated and it was found that the CB aggregates consist of closely packed CB primary particles. The presence of large particles of ZnO and particles of ZnS on the order of 10 nm in size is confirmed.

3.
Soft Matter ; 19(17): 3058-3068, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37017407

RESUMO

This study demonstrates that a simple statistical copolymer can form self-assembled lamellae, whose structures depend on both the comonomer composition and the annealing temperature. Statistical copolymers of octadecyl acrylamide and hydroxyethyl acrylamide [p(ODA/HEAm)] were prepared via free-radical copolymerization, and their thermal properties were studied by differential scanning calorimetry. Thin films of p(ODA/HEAm) were prepared via spin-coating, and their structures were analyzed using X-ray diffraction. It was found that copolymers with HEAm contents between 28 and 50% formed self-assembled lamellae upon annealing at a temperature ∼10 °C above the glass-transition temperature. The self-assembled form was found to possess a "side-chain-mixed" lamellar structure, in which the ODA and HEAm side chains are oriented perpendicular to the lamellar plane composed of the polymer main chain. Interestingly, a copolymer with a HEAm content between 36 and 50% transformed from the side-chain-mixed lamellar structure to generate a "side-chain-segregated" lamellar structure upon annealing at a significantly higher temperature (∼50 °C above Tg). In this structure, the ODA and HEAm side chains were found to be oriented in opposite directions but perpendicular to the lamellar plane. The packing of the side chains in the lamellar structures was studied using Fourier-transform infrared spectroscopy. It was concluded that the structures of the self-assembled lamellae are determined by the strain forces generated during self-assembly, and by the segregation forces existing between the comonomers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35076204

RESUMO

Metal halide perovskites attract significant attention because of their excellent optoelectronic and semiconducting properties. However, there are environmental concerns related to the toxicity of the lead metal that is mainly used in these perovskites. PEA2SnI4 perovskite is a potential candidate for lead-free perovskites because of its pure red emission. Although, undesired Sn4+ oxidation results in the deterioration of PEA2SnI4 perovskite. We demonstrate the two-step crystallization of PEA2SnI4 through the (i) reprecipitation and (ii) recrystallization processes. A film prepared using this method exhibits narrowed emission, with a full width at half-maximum from 30.0 to 26.1 nm, because of its homogeneous emission. Moreover, the Sn4+ content of two-step-crystallized PEA2SnI4 films is five times lower than that of a control film. Diffusion-ordered spectroscopy analysis indicates that the two-step precursor exhibits a smaller hydrodynamic radius crystal seed, which enhances crystallization during spin coating. The resulting two-step crystallized PEA2SnI4-based light-emitting diode (LED) exhibits a maximum external quantum efficiency (EQE) of 0.4% with an average of 0.2%, which is two times greater than that of the control device. This two-step approach may be generalized to synthesize other lead-free materials.

5.
J Appl Crystallogr ; 54(Pt 6): 1784-1792, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963766

RESUMO

Small-angle X-ray scattering (SAXS) coupled with computed tomography (CT), denoted SAXS-CT, has enabled the spatial distribution of the characteristic parameters (e.g. size, shape, surface, length) of nanoscale structures inside samples to be visualized. In this work, a new scheme with Tikhonov regularization was developed to remove the effects of artifacts caused by streak scattering originating from the reflection of the incident beam in the contour regions of the sample. The noise due to streak scattering was successfully removed from the sinogram image and hence the CT image could be reconstructed free from artifacts in the contour regions.

6.
Angew Chem Int Ed Engl ; 60(15): 8406-8409, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33417288

RESUMO

Mechanochromic elastomers that exhibit force-induced cross-linking reactions in the bulk state are introduced. The synthesis of segmented polyurethanes (SPUs) that contain difluorenylsuccinonitrile (DFSN) moieties in the main chain and methacryloyl groups in the side chains was carried out. DFSN was selected as the mechanophore because it dissociates under mechanical stimuli to form pink cyanofluorene (CF) radicals, which can also initiate the radical polymerization of methacrylate monomers. The obtained elastomers generated CF radicals and changed color by compression or extension; they also became insoluble due to the mechanically induced cross-linking reactions. Additionally, an SPU containing diphenylmethane units also exhibited highly sensitive mechanofluorescence. To the best of our knowledge, this is the first report to demonstrate damage detection ability and changes in the mechanical properties of bulk elastomers induced by simple compression or extension.

7.
ACS Macro Lett ; 9(8): 1108-1113, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35653216

RESUMO

A difluorenylsuccinonitrile-(DFSN)-based linker, whose central C-C bond is readily cleaved under mechanical stress to generate a relatively stable pink radical species, was introduced into polymer networks. DFSN-based cross-linked polymers exhibit improved mechanical properties as compared to those of the corresponding covalently cross-linked polymers owing to the energy dissipation induced by cleavage of the central DFSN bond. The toughening mechanism of DFSN-based elastomers is qualitatively visualized by the intensity of the pink color and can be quantitatively characterized by electron paramagnetic resonance. These results demonstrate that the extent of DFSN cleavage is the main factor improving the mechanical properties of the polymer networks.

8.
Materials (Basel) ; 11(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445736

RESUMO

This work reports on an experimental study of the stretching of ultra-high molecular weight polyethylene (UHMWPE) film in various uniaxial/biaxial stretching modes at various temperatures and stretching speeds. We examined the stress-birefringence relationship as a stress-optical rule (SOR) under uniaxial stretching and evaluated the stress-optical coefficient (SOC). Wide-angle X-ray diffraction (WAXD) measurements were applied to evaluate the contribution to birefringence of the crystalline and amorphous phases and to characterize stretching modes. In simultaneous biaxial stretching, the melting temperature (Tm) proved critical to structural formation. We applied thermal analysis techniques and tensile testing to evaluate higher order structures after each stretching mode.

9.
J Phys Chem B ; 122(4): 1439-1452, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216427

RESUMO

We present evidence that the transition between organic and third phases, which can be observed in the plutonium uranium reduction extraction (PUREX) process at high metal loading, is an unusual transition between two isotropic bicontinuous microemulsion phases. As this system contains so many components, however, we have been seeking first to investigate the properties of a simpler system, namely, the related metal-free, quaternary water/n-dodecane/nitric acid/tributyl phosphate (TBP) system. This quaternary system has been shown to exhibit, under appropriate conditions, three coexisting phases: a light organic phase, an aqueous phase, and the so-called third phase. In the current work, we focused on the coexistence of the light organic phase with the third phase. Using Gibbs ensemble Monte Carlo (GEMC) simulations, we found coexistence of a phase rich in nitric acid and dilute in n-dodecane (the third phase) with a phase more dilute in nitric acid but rich in n-dodecane (the light organic phase). The compositions and densities of these two coexisting phases determined using the simulations were in good agreement with those determined experimentally. Because such systems are generally dense and the molecules involved are not simple, the particle exchange rate in their GEMC simulations can be rather low. To test whether a system having a composition between those of the observed third and organic phases is indeed unstable with respect to phase separation, we used the Bennett acceptance ratio method to calculate the Gibbs energies of the homogeneous phase and the weighted average of the two coexisting phases, where the compositions of these phases were taken both from experimental results and from the results of the GEMC simulations. Both demixed states were determined to have statistically significant lower Gibbs energies than the uniform, mixed phase, providing confirmation that the GEMC simulations correctly predicted the phase separation. Snapshots from the simulations and a cluster analysis of the organic and third phases revealed structures akin to bicontinuous microemulsion phases, with the polar species residing within a mesh and with the surface of the mesh formed by amphiphilic TBP molecules. The nonpolar n-dodecane molecules were observed in these snapshots to be outside this mesh. The only large-scale structural differences observed between the two phases were the dimensions of the mesh. Evidence for the correctness of these structures was provided by the results of small-angle X-ray scattering (SAXS) studies, where the profiles obtained for both the organic and third phases agreed well with those calculated from simulations. Finally, we looked at the microscopic structures of the two phases. In the organic phase, the basic motif was observed to be one nitric acid molecule hydrogen-bonded to a TBP molecule. In the third phase, the most common structure was that of the hydrogen-bonded TBP-HNO3-HNO3 chain. A cluster analysis provided evidence for TBP forming an extended, connected network in both phases. Studies of the effects of metal ions on these systems will be presented elsewhere.

10.
J Phys Chem B ; 120(23): 5183-93, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27192017

RESUMO

A refined model for tri-n-butyl phosphate (TBP), which uses a new set of partial charges generated from our ab initio density functional theory calculations, has been proposed in this study. Molecular dynamics simulations are conducted to determine the thermodynamic properties, transport properties, and the microscopic structures of liquid TBP, TBP/water mixtures, and TBP/n-alkane mixtures. These results are compared with those obtained from four other TBP models, previously described in the literature. We conclude that our refined TBP model appears to be the only TBP model from this set that, with reasonable accuracy, can simultaneously predict the properties of TBP in bulk TBP, in organic diluents, and in aqueous solution. The other models only work well for two of the three systems mentioned above. This new TBP model is thus appropriate for the simulation of liquid-liquid extraction systems in the nuclear extraction process, where one needs to simultaneously model TBP in both aqueous and organic phases. It is also promising for the investigation of the microscopic structure of the organic phase in these processes and for the characterization of third-phase formation, where TBP again interacts simultaneously with both polar and nonpolar molecules. Because the proposed TBP model uses OPLS-2005 Lennard-Jones parameters, it may be used with confidence to model mixtures of TBP with other species whose parameters are given by the OPLS-2005 force field.

11.
Sci Rep ; 4: 6585, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300233

RESUMO

Following the Fukushima Daiichi nuclear disaster in 2011, Cs radioisotopes have been dispersed over a wide area. Most of the Cs has remained on the surface of the soil because Cs(+) is strongly adsorbed in the interlayer spaces of soil clays, particularly vermiculite. We have investigated the microscopic structure of an aqueous suspension of vermiculite clay over a wide length scale (1-1000 Å) by small-angle X-ray scattering. We determined the effect of the adsorption behavior of Cs(+) on the structural changes in the clay. It was found that the abruption of the clay sheets was induced by the localization of Cs(+) at the interlayer. This work provides important information for predicting the environmental fate of radioactive Cs in polluted areas, and for developing methods to extract Cs from the soil and reduce radioactivity.

12.
J Phys Chem B ; 117(30): 9067-72, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23837528

RESUMO

We have found the first evidence that a polymer blend Langmuir monolayer can phase-separate via spinodal decomposition (SD) mechanism. The system was a poly(methyl methacrylate)/poly(L-lactide) mixture. It phase-separated immediately after compression on a water surface and formed a spinodal-like morphology, as observed by atomic force microscopy (AFM). The fast Fourier transform of the AFM images showed a clear spinodal ring with a maximum intensity at a wavenumber of q(m). At the small quench depth at a surface pressure of 2 mN/m, q(m) did not change, but the concentration difference between the domains (ΔΦ) grew with time, corresponding to the early-stage SD. At larger quench depths at 4 and 5 mN/m, q(m) significantly decreased, but ΔΦ was constant with time; this behavior corresponded well to the late-stage SD. Thus, the 2D phase separation in the Langmuir monolayer was basically explained by the SD mechanism well-known in 3D systems. In the late stage SD of the monolayer, q(m) scaled with time much faster than that expected by theories for the 2D state. Phase separation via a SD mechanism is a promising new way to control the lateral morphology of Langmuir monolayers, one of the main issues in nanotechnology that remains difficult to attain even today.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061802, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17677289

RESUMO

We investigate the density fluctuations in crystalline polymers under uniaxial stretch in the order of submicrons to microns with two-dimensional ultrasmall-angle x-ray scattering. Before uniaxial stretch, we found isotropic density fluctuations obeying the mass fractal with the fractal dimension 2.6. After uniaxial stretch, the isotropic scattering pattern was transformed into the butterfly pattern. The butterfly pattern is caused by the stress-induced density fluctuations and the heterogeneous deformation associating with the spatial heterogeneity of stress field due to the distribution of crystalline and amorphous regions.

15.
J Chem Phys ; 126(6): 064903, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17313240

RESUMO

This paper reports results of quantitative comparison between dynamic structure factors obtained experimentally and those calculated by using the Doi and Onuki (DO) theory for semidilute polymer solutions. The authors obtained the dynamic structure factors with dynamic light scattering (DLS) experiment while the dynamic structure factors were calculated by using DO theory with osmotic compressibility, viscoelastic relaxation function, and friction coefficient which are obtained independently of DLS experiment. Calculated dynamic structure factors agree with experimental ones well and can express the q-dependent fast modes and the q-insensitive slow mode which experimental ones show. The authors estimated the characteristic parameters, interdiffusion coefficient and cooperative diffusion coefficient, from experimental and calculated results by using the procedure proposed by Einaga and Fujita [Polymer 40, 565 (1999)]. The estimated parameters for the DLS experiment agree with those for the calculation. These agreements in dynamic structure factors and the parameters indicate that DO theory can describe well the relaxation processes of semidilute polymer solutions.

16.
J Chem Phys ; 121(15): 7501-4, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15473825

RESUMO

Shear-induced phase separation was found in "nonentangled" oligomer mixture. The sheared mixture in one phase becomes turbid and its scattering pattern exhibits so-called "butterfly pattern" which is commonly observed in shear-induced phase separation of semidilute polymer solutions. The origin of the shear-induced phase separation is found to be dynamical asymmetry due to the difference in the glass transition temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA