Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 13(8)2020 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-32859577

RESUMO

Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette-Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis.


Assuntos
Desenvolvimento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Peixe-Zebra , Animais , Modelos Animais de Doenças , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Especificidade da Espécie , Tuberculose/imunologia , Tuberculose/microbiologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
2.
Vaccine ; 38(35): 5685-5694, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32624250

RESUMO

BACKGROUND: Tuberculosis is a major challenge for health care, as options for its treatment and prevention are limited. Therefore, novel approaches, such as DNA vaccination, to both prevent primary infections and the reactivation of latent infections need to be developed. A Mycobacterium marinum infection in adult zebrafish (Danio rerio) recapitulates features of the human Mycobacterium tuberculosis infection, providing a convenient preclinical animal model for studying tuberculosis. METHODS: Hypoxic M. marinum cultures were produced with the Wayne model, and further reaerated to replicate the in vivo reactivation in vitro. Expression levels of M. marinum genes were studied with mRNA sequencing from exponentially growing bacteria, anaerobic cultures and at 2 and 12 h after reaeration. Seven reactivation-associated genes were selected for further studies, where their antigen potentiality as DNA-vaccines to prevent reactivation of a latent mycobacterial infection was investigated in the adult zebrafish model. The Mann-Whitney test was used to evaluate differences in bacterial counts between the groups. RESULTS: The mRNA sequencing data showed that, seven M. marinum genes, MMAR_0444, MMAR_0514, MMAR_0552, MMAR_0641, MMAR_1093, MMAR_4110 and MMAR_4524, were upregulated during reactivation when compared to both dormant and logarithmic growing bacteria. Four different MMAR_4110 antigens prevented the reactivation of a latent mycobacterial infection in the adult zebrafish. CONCLUSION: This study provides novel information about reactivation-related M. marinum genes. One of the antigens, MMAR_4110, inhibited the reactivation of a latent M. marinum infection in zebrafish, implicating that the characterized genes could be potential targets for further vaccine and drug development against mycobacterial diseases.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Animais , DNA , Modelos Animais de Doenças , Humanos , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium marinum/genética , Vacinação , Peixe-Zebra
3.
J Vis Exp ; (140)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30451232

RESUMO

The interest in DNA-based vaccination has increased during the past two decades. DNA vaccination is based on the cloning of a sequence of a selected antigen or a combination of antigens into a plasmid, which enables a tailor-made and safe design. The administration of DNA vaccines into host cells leads to the expression of antigens that stimulate both humoral and cell-mediated immune responses. This report describes a protocol for the cloning of antigen sequences into the pCMV-EGFP plasmid, the immunization of adult zebrafish with the vaccine candidates by intramuscular microinjection, and the subsequent electroporation to improve intake. The vaccine antigens are expressed as green fluorescent protein (GFP)-fusion proteins, which allows the confirmation of the antigen expression under UV light from live fish and the quantification of expression levels of the fusion protein with ELISA, as well as their detection with a western blot analysis. The protective effect of the vaccine candidates is tested by infecting the fish with Mycobacterium marinum five weeks postvaccination, followed by the quantification of the bacteria with qPCR four weeks later. Compared to mammalian preclinical screening models, this method provides a cost-effective method for the preliminary screening of novel DNA-based vaccine candidates against a mycobacterial infection. The method can be further applied to screening DNA-based vaccines against various bacterial and viral diseases.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium marinum/imunologia , Vacinas de DNA/imunologia , Peixe-Zebra/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/imunologia , Imunidade Celular , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Vacinação , Vacinas de DNA/administração & dosagem , Peixe-Zebra/microbiologia
4.
Dis Model Mech ; 11(3)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29590635

RESUMO

Roughly one third of the human population carries a latent Mycobacterium tuberculosis infection, with a 5-10% lifetime risk of reactivation to active tuberculosis and further spreading the disease. The mechanisms leading to the reactivation of a latent Mycobacterium tuberculosis infection are insufficiently understood. Here, we used a natural fish pathogen, Mycobacterium marinum, to model the reactivation of a mycobacterial infection in the adult zebrafish (Danio rerio). A low-dose intraperitoneal injection (∼40 colony-forming units) led to a latent infection, with mycobacteria found in well-organized granulomas surrounded by a thick layer of fibrous tissue. A latent infection could be reactivated by oral dexamethasone treatment, which led to disruption of the granuloma structures and dissemination of bacteria. This was associated with the depletion of lymphocytes, especially CD4+ T cells. Using this model, we verified that ethambutol is effective against an active disease but not a latent infection. In addition, we screened 15 mycobacterial antigens as postexposure DNA vaccines, of which RpfB and MMAR_4207 reduced bacterial burdens upon reactivation, as did the Ag85-ESAT-6 combination. In conclusion, the adult zebrafish-M. marinum infection model provides a feasible tool for examining the mechanisms of reactivation in mycobacterial infections, and for screening vaccine and drug candidates.This article has an associated First Person interview with the first author of the paper.


Assuntos
Antígenos de Bactérias/imunologia , Terapia de Imunossupressão , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/imunologia , Vacinas contra a Tuberculose/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Animais , Carga Bacteriana/efeitos dos fármacos , Biomarcadores/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Etambutol/farmacologia , Etambutol/uso terapêutico , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/patologia , Depleção Linfocítica , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/crescimento & desenvolvimento , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
5.
PLoS One ; 12(7): e0181942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742838

RESUMO

Tuberculosis (TB) remains a major global health challenge and the development of a better vaccine takes center stage in fighting the disease. For this purpose, animal models that are capable of replicating the course of the disease and are suitable for the early-stage screening of vaccine candidates are needed. A Mycobacterium marinum infection in adult zebrafish resembles human TB. Here, we present a pre-clinical screen for a DNA-based tuberculosis vaccine in the adult zebrafish using an M. marinum infection model. We tested 15 antigens representing different types of mycobacterial proteins, including the Resuscitation Promoting factors (Rpf), PE/PPE protein family members, other membrane proteins and metabolic enzymes. The antigens were expressed as GFP fusion proteins, facilitating the validation of their expression in vivo. The efficiency of the antigens was tested against a low-dose intraperitoneal M. marinum infection (≈ 40 colony forming units), which mimics a primary M. tuberculosis infection. While none of the antigens was able to completely prevent a mycobacterial infection, four of them, namely RpfE, PE5_1, PE31 and cdh, led to significantly reduced bacterial burdens at four weeks post infection. Immunization with RpfE also improved the survival of the fish against a high-dose intraperitoneal injection with M. marinum (≈ 10.000 colony forming units), resembling the disseminated form of the disease. This study shows that the M. marinum infection model in adult zebrafish is suitable for the pre-clinical screening of tuberculosis vaccines and presents RpfE as a potential antigen candidate for further studies.


Assuntos
Antígenos de Bactérias/imunologia , Doenças dos Peixes/prevenção & controle , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium marinum/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Animais , Antígenos de Bactérias/uso terapêutico , Modelos Animais de Doenças , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/veterinária , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
6.
Expert Opin Drug Discov ; 10(8): 871-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26073097

RESUMO

INTRODUCTION: Tuberculosis (TB) is a major global health problem, and new drugs and vaccines are urgently needed. As clinical trials in humans require tremendous resources, preclinical drug and vaccine development largely relies on valid animal models that recapitulate the pathology of human disease and the immune responses of the host as closely as possible. AREAS COVERED: This review describes the animal models used in TB research, the most widely used being mice, guinea pigs and nonhuman primates. In addition, rabbits and cattle provide models with a disease pathology resembling that of humans. Invertebrate models, including the fruit fly and the Dictyostelium amoeba, have also been used to study mycobacterial infections. Recently, the zebrafish has emerged as a promising model for studying mycobacterial infections. The zebrafish model also facilitates the large-scale screening of drug and vaccine candidates. EXPERT OPINION: Animal models are needed for TB research and provide valuable information on the mechanisms of the disease and on ways of preventing it. However, the data obtained in animal studies need to be carefully interpreted and evaluated before making assumptions concerning humans. With an increasing understanding of disease mechanisms, animal models can be further improved to best serve research goals.


Assuntos
Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Tuberculose/tratamento farmacológico , Animais , Desenho de Fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA