RESUMO
We investigated the responses in growth and emissions of biogenic volatile organic compounds (BVOCs) in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] Karst.) and silver birch (Betula pendula Roth) seedlings to a simulated climate warming of +2⯰C (T2) and +4⯰C (T4), compared to the ambient conditions, during two growing seasons (2019-2020) in a controlled field experiment in central Finland. In all seedlings, height was measured weekly. Diameter was measured continuously for one seedling from each tree species per plot. For shoot and root biomass measurements, half of the seedlings were harvested at end of the first growing season and the rest at the end of the second growing season. Foliage BVOC emission rates were measured at the end of the second growing season. Biomass, height, and diameter growth of silver birch did benefit the most from warming in both growing seasons. In the Scots pine and Norway spruce seedlings, height and diameter growth increased with increasing temperature in the second growing season, more so in Scots pine. Overall, the shoot and root biomass of conifer seedlings increased with increasing temperature. In the conifer seedlings, warming increased biomass and diameter growth more than height growth, due to their predetermined height growth pattern. The warming increased BVOC emissions more clearly in silver birch, whilst the BVOC emissions were in conifers less sensitive to temperature variation. Based on our findings, silver birch seedlings could be expected to benefit the most from warmer growing conditions and Norway spruce the least.
Assuntos
Picea , Pinus sylvestris , Compostos Orgânicos Voláteis , Betula , PlântulaRESUMO
Accumulation of secondary metabolites may exhibit developmentally regulated variation in different plant organs. Moreover, prevailing environmental conditions may interact with development-related variations in plant traits. In this study, we examined developmentally regulated variation in phenolic accumulation in the twigs of dioecious Populus tremula (L.) and how the effects of elevated temperature and ultraviolet B (UVB) radiation on growth and phenolics accumulation varied as the plants get older. In an open-field experiment, six female and six male genotypes were exposed to single and combined elevated temperature and UVB radiation treatments for three consecutive growing seasons. The concentrations of low molecular weight phenolics and condensed tannins did not show age-dependent variation in the twigs. In temperature-treated plants, diameter growth rate decreased, and concentration of condensed tannins increased as plants aged; there were no cumulative effects of elevated UVB radiation on growth and phenolic accumulation. Females maintained a higher concentration of low molecular weight phenolics throughout the experimental period; however, growth and phenolic concentration did not vary over time in females and males. Our results suggest that phenolic accumulation in perennial plants may not necessarily always exhibit age-dependent variation and the effects of elevated temperature on growth and phenolic may diminish as plants get older.
Assuntos
Populus , Folhas de Planta , Populus/genética , Estações do Ano , Plântula , TemperaturaRESUMO
Knowledge about the defensive chemistry of coniferous trees has increased in recent years regarding a number of alkaloid compounds; in addition to phenolics and terpenes. Here, we show that Norway spruce (Picea abies (L.) H. Karst.), an important boreal zone tree species; accumulates 1,6-dehydropinidine (2-methyl-6-(2-propenyl)-1,6-piperideine) in its needles and bark. We reanalyzed previously published GC-MS data to obtain a full picture of 1,6-dehydropinidine in P. abies. 1,6-dehydropinidine appeared to especially accumulate in developing spring shoots. We used solid-phase partitioning to collect the alkaloid fraction of the sprouts and thin-layer chromatography to purify 1,6-dehydropinidine. The antibacterial properties of the 1,6-dehydropinidine fraction were tested using a broth microdilution method; with Streptococcus equi subsp. equi as a model organism. Based on our results 1,6-dehydropinidine is common in alkaloid extractions from P. abies (0.4 ± 0.03 mg g-1 dw in mature needles) and it is especially abundant in young spruce shoots (2.7 ± 0.5 mg g-1 dw). Moreover; 1,6-dehydropinidine extracted from P. abies sprouts showed mild antibacterial potential against Streptococcus equi subsp. equi (MIC 55 µg mL-1). The antibacterial activity of a plant compound thought of as an intermediate rather than an end-product of biosynthesis calls for more detailed studies regarding the biological function of these coniferous alkaloids.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Picea/química , Abies/química , Alcaloides/química , Streptococcus , Streptococcus equi/efeitos dos fármacosRESUMO
The responses in growth and defense after tissue damage are highly variable in plants depending on species, damaged-tissue type and the intensity of damage. The prevailing abiotic conditions can also influence these responses. In this study, our aim was to examine how the removal of lateral vegetative buds affects the growth and accumulation of phenolics in saplings of the dioecious Populus tremula grown under simulated climate change. For three growing seasons, the saplings were grown under ambient conditions (control), elevated temperature (+2°C) and elevated UV radiation (30%) (UVB and UVA as its control), or a combination of these. In the fourth growing season, all saplings were grown under ambient conditions. The bud removal was performed twice - in summer and autumn - in the third year. The responses of growth and the accumulation of phenolics to the bud removal were measured at the end of the fourth growing season. Removal of 5% of the lateral buds resulted in higher leaf, stem and total plant biomass in both sexes of P. tremula saplings, compared to intact plants. The effects were greater in the temperature-treated plants, especially in the temperature-treated females. The concentrations of flavonoids and condensed tannins were higher in the bud-removed individuals. The concentration of condensed tannins was also higher in the males than in the females, opposite to the concentration of phenolic acids. There was no significant interaction between bud removal and UVB treatment on either growth or phenolics. Our results suggest that plants can allocate resources to both growth and defense simultaneously in response to tissue loss, and that global warming can modify the responses to some extent.
Assuntos
Mudança Climática , Hidroxibenzoatos/análise , Populus , Aquecimento Global , Fenóis/análise , Folhas de Planta/química , Estações do Ano , Temperatura , Raios UltravioletaRESUMO
In boreal woody plants, concentrations of defensive phenolic compounds are expected to be at a high level during the juvenile phase and decrease in maturity, although there is variation between plant species. Females of dioecious species, like most of the Salicaceae, are expected to invest their resources in defense and reproduction, while males are expected to be more growth-oriented. We studied age- and sex-dependent changes in leaf and stem phenolics, and in height and diameter growth in a dioecious Salix myrsinifolia plants over a seven-year time period. In addition, we registered flowering as well as rust damage in the leaves. From the first year and throughout ontogenetic development from juvenile to adult phases, there was no significant change in the concentrations of any of the studied compounds in the leaves of S. myrsinifolia. In the stems, the concentrations of six out of 43 identified compounds decreased slightly with age, which may be partly explained by dilution caused by the increment in stem diameter with age. The fairly steady chemistry level over seven years, accompanied by moderate genotypic phenolic variation, indicates important roles of chemical defenses against herbivory for this early-successional species.
Assuntos
Fenóis/química , Salix/química , Cromatografia Líquida de Alta Pressão , Fenóis/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Análise de Componente Principal , Salix/crescimento & desenvolvimento , Salix/metabolismo , Fatores de TempoRESUMO
With the constant accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and increasing temperature and CO2 levels, plants will inevitably be exposed to combined stress. Studies on the effects of such combined stresses are needed to develop mitigation and adaptation measures. Here, we investigated the effects of soil pyrene contamination (50 mg kg-1) on growth and phenolics of 1-year-old Norway spruce seedlings from five different origins in Finland at elevated temperature (+ 2 °C) and CO2 (+ 360 ppm). Pyrene significantly decreased spruce height growth (0-48%), needle biomass (0-44%), stem biomass (0-43%), and total phenolic concentrations in needles (2-13%) and stems (1-19%) compared to control plants. Elevated temperature alone did not affect growth but led to lower concentrations of total phenolics in needles (5-29%) and stems (5-18%) in both soil treatments. By contrast, elevated CO2 led to higher needle biomass (0-39%) in pyrene-spiked soils and higher concentrations of stem phenolics (0-18%) in pyrene-spiked and control soils compared to ambient treatments. The decrease in height growth and phenolic concentrations caused by pyrene was greater at elevated temperature, while elevated CO2 only marginally modified the response. Seedlings from different origins showed different responses to the combined environmental stressors. The changes in growth and in the quantity and quality of phenolics in this study suggest that future climate changes will aggravate the negative influence of soil pyrene pollution on northern conifer forest ecosystems.
Assuntos
Dióxido de Carbono/análise , Fenóis/metabolismo , Picea/efeitos dos fármacos , Pirenos/toxicidade , Poluentes do Solo/toxicidade , Temperatura , Aclimatação , Biomassa , Mudança Climática , Ecossistema , Finlândia , Picea/crescimento & desenvolvimento , Picea/metabolismoRESUMO
Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs.