Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 120: 488-498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925418

RESUMO

Influenza A virus (IAV) infection during pregnancy can increase the risk for neurodevelopmental disorders in the offspring, however, the underlying neurobiological mechanisms are largely unknown. To recapitulate viral infection, preclinical studies have traditionally focused on using synthetic viral mimetics, rather than live IAV, to examine consequences of maternal immune activation (MIA)-dependent processes on offspring. In contrast, few studies have used live IAV to assess effects on global gene expression, and none to date have addressed whether moderate IAV, mimicking seasonal influenza disease, alters normal gene expression trajectories in different brain regions across different stages of development. Herein, we show that moderate IAV infection during pregnancy, which causes mild maternal disease and no overt foetal complications in utero, induces lasting effects on the offspring into adulthood. We observed behavioural changes in adult offspring, including disrupted prepulse inhibition, dopaminergic hyper-responsiveness, and spatial recognition memory deficits. Gene profiling in the offspring brain from neonate to adolescence revealed persistent alterations to normal gene expression trajectories in the prefronal cortex, hippocampus, hypothalamus and cerebellum. Alterations were found in genes involved in inflammation and neurogenesis, which were predominately dysregulated in neonatal and early adolescent offspring. Notably, late adolescent offspring born from IAV infected mice displayed altered microglial morphology in the hippocampus. In conclusion, we show that moderate IAV during pregnancy perturbs neurodevelopmental trajectories in the offspring, including alterations in the neuroinflammatory gene expression profile and microglial number and morphology in the hippocampus, resulting in behavioural changes in adult offspring. Such early perturbations may underlie the vulnerability in human offspring for the later development of neurodevelopmental disorders, including schizophrenia. Our work highlights the importance of using live IAV in developing novel preclinical models that better recapitulate the real-world impact of inflammatory insults during pregnancy on offspring neurodevelopmental trajectories and disease susceptibility later in life.


Assuntos
Encéfalo , Vírus da Influenza A , Infecções por Orthomyxoviridae , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Camundongos , Encéfalo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/genética , Expressão Gênica , Modelos Animais de Doenças
2.
Biol Psychiatry Glob Open Sci ; 4(1): 229-239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298794

RESUMO

Background: The development of more effective treatments for schizophrenia targeting cognitive and negative symptoms has been limited, partly due to a disconnect between rodent models and human illness. Ketamine administration is widely used to model symptoms of schizophrenia in both humans and rodents. In mice, subchronic ketamine treatment reproduces key dopamine and glutamate dysfunction; however, it is unclear how this translates into behavioral changes reflecting positive, negative, and cognitive symptoms. Methods: In male and female mice treated with either subchronic ketamine or saline, we assessed spontaneous and amphetamine-induced locomotor activity to measure behaviors relevant to positive symptoms, and used a touchscreen-based progressive ratio task of motivation and the rodent continuous performance test of attention to capture specific negative and cognitive symptoms, respectively. To explore neuronal changes underlying the behavioral effects of subchronic ketamine treatment, we quantified expression of the immediate early gene product, c-Fos, in key corticostriatal regions using immunofluorescence. Results: We showed that spontaneous locomotor activity was unchanged in male and female subchronic ketamine-treated animals, and amphetamine-induced locomotor response was reduced. Subchronic ketamine treatment did not alter motivation in either male or female mice. In contrast, we identified a sex-specific effect of subchronic ketamine on attentional processing wherein female mice performed worse than control mice due to increased nonselective responding. Finally, we showed that subchronic ketamine treatment increased c-Fos expression in prefrontal cortical and striatal regions, consistent with a mechanism of widespread disinhibition of neuronal activity. Conclusions: Our results highlight that the subchronic ketamine mouse model reproduces a subset of behavioral symptoms that are relevant for schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA