Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Pediatr ; 30(6): 555-566, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208441

RESUMO

OBJECTIVE: Medulloblastoma (MB) is the most common malignant pediatric brain tumor and accounts for approximately 20% of all pediatric CNS tumors. Current multimodal treatment is associated with a 70%-90% 5-year survival rate; however, the prognosis for patients with tumor dissemination and recurrent MB remains poor. The majority of survivors exhibit long-term neurocognitive complications; thus, more effective and less toxic treatments are critically needed. Tumor treating fields (TTFields) are low-intensity, alternating electric fields that disrupt cell division through physical interactions with key molecules during mitosis. Side effects from TTField therapy are minimal, making it an ideal candidate for MB treatment. METHODS: To determine if TTFields can be an effective treatment for MB, the authors conducted an in vitro study treating multiple MB cell lines. Three MB molecular subgroups (SHH [sonic hedgehog], group 3, and group 4) were treated for 24, 48, and 72 hours at 100, 200, 300, and 400 kHz. Combinatorial studies were conducted with the small-molecule casein kinase 2 inhibitor CX-4945. RESULTS: TTFields reduced MB cell growth with an optimal frequency of 300 kHz, and the most efficacious treatment time was 72 hours. Treatment with TTFields dysregulated actin polymerization and corresponded with a reduction in cell motility and invasion. TTFields also induced DNA damage (γH2AX, 53BP1) that correlated with an increase in apoptotic cells. The authors discovered that CX-4945 works synergistically with TTFields to reduce MB growth. In addition, combining CX-4945 and TTFields increased the cellular actin dysregulation, which correlated with a decrease in MB migration. CONCLUSIONS: The findings of this study demonstrate that TTFields may be a novel and less toxic method to treat patients with MB.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Terapia por Estimulação Elétrica , Meduloblastoma , Humanos , Criança , Meduloblastoma/terapia , Actinas , Proteínas Hedgehog , Neoplasias Encefálicas/terapia , Dano ao DNA , Movimento Celular , Neoplasias Cerebelares/terapia , Linhagem Celular
2.
Oncogene ; 39(9): 2029, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31659253

RESUMO

The original version of this Article contained an error in the spelling of the author David Solow-Cordero, which was incorrectly given as David Solow-Codero. This has now been corrected in both the PDF and HTML versions of the Article.

3.
Sci Rep ; 9(1): 14020, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570734

RESUMO

Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.


Assuntos
Neoplasias Encefálicas/patologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Invasividade Neoplásica/genética
4.
Oncogene ; 38(42): 6867-6879, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406250

RESUMO

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Since surviving patients experience severe neurocognitive disabilities, better and more effective treatments are needed to enhance their quality of life. Casein kinase 2 (CK2) is known to regulate cell growth and survival in multiple cancers; however, the role of CK2 in MB is currently being studied. In this study, we verified the importance of CK2 in MB tumorigenesis and discovered that inhibition of CK2 using the small molecule inhibitor, CX-4945, can sensitize MB cells to a well-known and tolerated chemotherapeutic, temozolomide (TMZ). To study the role of CK2 in MB we modulated CK2 expression in multiple MB cells. Exogenous expression of CK2 enhanced cell growth and tumor growth in mice, while depletion or inhibition of CK2 expression decreased MB tumorigenesis. Treatment with CX-4945 reduced MB growth and increased apoptosis. We conducted a high-throughput screen where 4000 small molecule compounds were analyzed to identify compounds that increased the anti-tumorigenic properties of CX-4945. TMZ was found to work synergistically with CX-4945 to decrease cell survival and increase apoptosis in MB cells. O-6-methylguanine-DNA methyltransferase (MGMT) activity is directly correlated to TMZ sensitivity. We found that loss of CK2 activity reduced ß-catenin expression, a known MGMT regulator, which in turn led to a decrease in MGMT expression and an increased sensitivity to TMZ. Our findings show that CK2 is important for MB maintenance and that treatment with CX-4945 can sensitize MB cells to TMZ treatment.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Caseína Quinase II/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Meduloblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Neoplasias Encefálicas/enzimologia , Humanos , Meduloblastoma/enzimologia , Prognóstico
5.
Nat Commun ; 9(1): 4651, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389946

RESUMO

The original version of this Article omitted Suzana A. Kahn, Siddhartha S. Mitra & Samuel H. Cheshier as jointly supervising authors. This has now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 4121, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297829

RESUMO

Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.


Assuntos
Proliferação de Células/genética , Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Receptor Notch1/genética , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Metástase Neoplásica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Receptor Notch1/imunologia , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
EMBO Mol Med ; 8(5): 511-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27138566

RESUMO

A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.


Assuntos
Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Proteína Oncogênica v-akt/metabolismo , Prazosina/farmacologia , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Animais , Anti-Hipertensivos/farmacologia , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Análise de Sobrevida
8.
BMC Cancer ; 15: 225, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884624

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most malignant primary brain tumor in adults, with a median survival time of one and a half years. Traditional treatments, including radiation, chemotherapy, and surgery, are not curative, making it imperative to find more effective treatments for this lethal disease. γ-Glutamyl transferase (GGT) is a family of enzymes that was shown to control crucial redox-sensitive functions and to regulate the balance between proliferation and apoptosis. GGT7 is a novel GGT family member that is highly expressed in brain and was previously shown to have decreased expression in gliomas. Since other members of the GGT family were found to be altered in a variety of cancers, we hypothesized that GGT7 could regulate GBM growth and formation. METHODS: To determine if GGT7 is involved in GBM tumorigenesis, we modulated GGT7 expression in two GBM cell lines (U87-MG and U138) and monitored changes in tumorigenicity in vitro and in vivo. RESULTS: We demonstrated for the first time that GBM patients with low GGT7 expression had a worse prognosis and that 87% (7/8) of primary GBM tissue samples showed a 2-fold decrease in GGT7 expression compared to normal brain samples. Exogenous expression of GGT7 resulted in a 2- to 3-fold reduction in proliferation and anchorage-independent growth under minimal growth conditions (1% serum). Decreasing GGT7 expression using either short interfering RNA or short hairpin RNA consistently increased proliferation 1.5- to 2-fold. In addition, intracranial injections of U87-MG cells with reduced GGT7 expression increased tumor growth in mice approximately 2-fold, and decreased mouse survival. To elucidate the mechanism by which GGT7 regulates GBM growth, we analyzed reactive oxygen species (ROS) levels in GBM cells with modulated GGT7 expression. We found that enhanced GGT7 expression reduced ROS levels by 11-33%. CONCLUSION: Our study demonstrates that GGT7 is a novel player in GBM growth and that GGT7 can play a critical role in tumorigenesis by regulating anti-oxidative damage. Loss of GGT7 may increase the cellular ROS levels, inducing GBM occurrence and growth. Our findings suggest that GGT7 can be a promising biomarker and a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , gama-Glutamiltransferase/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Xenoenxertos , Humanos , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , gama-Glutamiltransferase/genética
10.
J Mol Genet Med ; 8(1)2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25264454

RESUMO

Casein kinase 2 (CK2) is an oncogenic protein kinase which contributes to tumor development, proliferation, and suppression of apoptosis in multiple cancer types. The mechanism by which CK2 expression and activity leads to tumorigenesis in glioblastoma (GBM), a stage IV primary brain tumor, is being studied. Recent studies demonstrate that CK2 plays an important role in GBM formation and growth through the inhibition of tumor suppressors and activation of oncogenes. In addition, intriguing new reports indicate that CK2 may regulate GBM formation in a novel manner; CK2 may play a critical role in cancer stem cell (CSC) maintenance. Since glial CSCs have the ability to self-renew and initiate tumor growth, new treatments which target these CSCs are needed to treat this fatal disease. Inhibition of CK2 is potentially a novel method to inhibit GBM growth and reoccurrence by targeting the glial CSCs. A new, orally available, selective CK2 inhibitor, CX-4945 has had promising results when tested in cancer cell lines, in vivo xenograft models, and human clinical trials. The development of CK2 targeted inhibitors, starting with CX-4945, may lead to a new class of more effective cancer therapies.

11.
Neurosurg Clin N Am ; 23(2): 237-46, viii, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22440867

RESUMO

The purpose of this article is to update the neurosurgical field on current molecular markers important to glioblastoma biology, treatment, and prognosis. The highlighted biologic markers in this article include epidermal growth factor receptor (EGFR), EGFR variant III (EGFRvIII), phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and O6-methylguanine-DNA methyltransferase (MGMT).


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Cancer Res ; 72(10): 2657-71, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22419663

RESUMO

EGFRvIII is a tumor-specific variant of the epidermal growth factor receptor (EGFR). Although EGFRvIII is most commonly found in glioblastoma, its expression in other tumor types remains controversial. In this study, we investigated EGFRvIII expression and amplification in primary breast carcinoma. Our analyses confirmed the presence of EGFRvIII, but in the absence of amplification or rearrangement of the EGFR locus. Nested reverse transcriptase PCR and flow cytometry were used to detect a higher percentage of positive cases. EGFRvIII-positive cells showed increased expression of genes associated with self-renewal and epithelial-mesenchymal transition along with a higher percentage of stem-like cells. EGFRvIII also increased in vitro sphere formation and in vivo tumor formation. Mechanistically, EGFRvIII mediated its effects through the Wnt/ß-catenin pathway, leading to increased ß-catenin target gene expression. Inhibition of this pathway reversed the observed effects on cancer stem cell (CSC) phenotypes. Together, our findings show that EGFRvIII is expressed in primary breast tumors and contributes to CSC phenotypes in breast cancer cell lines through the Wnt pathway. These data suggest a novel function for EGFRvIII in breast tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Receptores ErbB/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Genes erbB-1 , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Fenótipo , Via de Sinalização Wnt
13.
J Neurooncol ; 108(3): 395-402, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22382786

RESUMO

Despite numerous clinical trials over the past 2 decades, the overall survival for children diagnosed with diffuse intrinsic pontine glioma (DIPG) remains 9-10 months. Radiation therapy is the only treatment with proven effect and novel therapies are needed. Epidermal growth factor receptor variant III (EGFRvIII) is the most common variant of the epidermal growth factor receptor and is expressed in many tumor types but is rarely found in normal tissue. A peptide vaccine targeting EGFRvIII is currently undergoing investigation in phase 3 clinical trials for the treatment of newly diagnosed glioblastoma (GBM), the tumor in which this variant receptor was first discovered. In this study, we evaluated EGFRvIII expression in pediatric DIPG samples using immunohistochemistry with a double affinity purified antibody raised against the EGFRvIII peptide. Staining of pediatric DIPG histological samples revealed expression in 4 of 9 cases and the pattern of staining was consistent with what has been seen in EGFRvIII transfected cells as well as GBMs from adult trials. In addition, analysis of tumor samples collected immediately post mortem and of DIPG cells in culture by RT-PCR, western blot analysis, and flow cytometry confirmed EGFRvIII expression. We were therefore able to detect EGFRvIII expression in 6 of 11 DIPG cases. These data suggest that EGFRvIII warrants investigation as a target for these deadly pediatric tumors.


Assuntos
Neoplasias do Tronco Encefálico/genética , Receptores ErbB/genética , Adulto , Western Blotting , Neoplasias do Tronco Encefálico/metabolismo , Pré-Escolar , Receptores ErbB/metabolismo , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Fragmentos de Peptídeos/imunologia , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Methods Enzymol ; 484: 531-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21036249

RESUMO

The c-Jun N-terminal kinases (JNK) are important regulators of cell growth, proliferation, and apoptosis. JNKs are typically activated by a sequence of events that include phosphorylation of its T-P-Y motif by an upstream kinase, followed by homodimerization and translocation to the nucleus. Constitutive activation of JNK has been found in a variety of cancers including non-small cell lung carcinomas, gliomas, and mantle cell lymphoma. In vitro studies show that constitutive activation of JNK induces a transformed phenotype in fibroblasts and enhances tumorigenicity in a variety of cell lines. Interestingly, a subset of JNK isoforms was recently found to autoactivate rendering the proteins constitutively active. These constitutively active JNK proteins were found to play a pivotal role in activating transcription factors that increase cellular growth and tumor formation in mice. In this chapter, we describe techniques and methods that have been successfully used to study the three components of JNK activation. Use of these techniques may lead to a better understanding of the components of JNK pathways and how JNK is activated in cancer cells.


Assuntos
Ensaios Enzimáticos/métodos , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Humanos , Isoenzimas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos
15.
BMC Biotechnol ; 10: 72, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20925961

RESUMO

BACKGROUND: EGF receptor variant III (EGFRvIII) is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM), breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community. RESULTS: In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAb(DMvIII), specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC) and immunofluorescence (IF) and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 107 M⁻¹ as determined by enzyme-linked immunosorbent assay (ELISA). CONCLUSION: This recombinant antibody thus holds great potential to be used as a research reagent and diagnostic tool in research laboratories and clinics because of its high quality, easy viability and unique versatility. This antibody is also a strong candidate to be investigated for further in vivo therapeutic studies.


Assuntos
Especificidade de Anticorpos , Receptores ErbB/imunologia , Proteínas Recombinantes/biossíntese , Anticorpos de Cadeia Única/biossíntese , Animais , Afinidade de Anticorpos , Linhagem Celular Tumoral , Reações Cruzadas , Epitopos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutagênese Sítio-Dirigida , Neoplasias Experimentais/imunologia , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética
16.
J Biol Chem ; 283(50): 34935-45, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18940813

RESUMO

c-Jun N-terminal kinases (JNKs) are part of the mitogen-activated protein kinase (MAPK) family and are important regulators of cell growth, proliferation, and apoptosis. Typically, a sequential series of events are necessary for MAPK activation: phosphorylation, dimerization, and then subsequent translocation to the nucleus. Interestingly, a constitutively active JNK isoform, JNK2alpha2, possesses the ability to autophosphorylate and has been implicated in several human tumors, including glioblastoma multiforme. Because overexpression of JNK2alpha2 enhances several tumorigenic phenotypes, including cell growth and tumor formation in mice, we studied the mechanisms of JNK2alpha2 autophosphorylation and autoactivation. We find that JNK2alpha2 dimerization in vitro and in vivo occurs independently of its autophosphorylation but is dependent on nine amino acids, known as the alpha-region. Alanine scanning mutagenesis of the alpha-region reveals that five specific mutants (L218A, K220A, G221A, I224A, and F225A) prevent JNK2alpha2 dimerization rendering JNK2alpha2 inactive and incapable of stimulating tumor formation. Previous studies coupled with additional mutagenesis of neighboring isoleucines and leucines (I208A, I214A, I231A, and I238A) suggest that a leucine zipper may play an important role in JNK2alpha2 homodimerization. We also show that a kinase-inactive JNK2alpha2 mutant can interact with and inhibit wild type JNK2alpha2 autophosphorylation, suggesting that JNK2alpha2 undergoes trans-autophosphorylation. Together, our results demonstrate that JNK2alpha2 differs from other MAPK proteins in two major ways; its autoactivation/autophosphorylation is dependent on dimerization, and dimerization most likely precedes autophosphorylation. In addition, we show that dimerization is essential for JNK2alpha2 activity and that prevention of dimerization may decrease JNK2alpha2 induced tumorigenic phenotypes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Alanina/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Ativação Enzimática , Humanos , Modelos Biológicos , Mutagênese , Mutação , Fenótipo , Fosforilação , Plasmídeos/metabolismo
17.
PLoS One ; 2(9): e963, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17896003

RESUMO

BACKGROUND: A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna-/- fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna-/- fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16(ink4a)-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna-/- cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna-/- cells with p14(arf). p14(arf) expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna-/- cells. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that pRB degradation in Lmna-/- cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna-/- fibroblasts. Second, Lmna-/- cells are refractory to p14(arf)-mediated cell cycle arrest, as was previously shown with p16(ink4a). Potential roles of lamin A/C in the suppression of tumorigenesis are discussed.


Assuntos
Lamina Tipo A/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Lamina Tipo A/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Proteína do Retinoblastoma/genética , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Transfecção , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo
18.
Mol Cell Biol ; 26(14): 5360-72, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809772

RESUMO

Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.


Assuntos
Ciclo Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Lamina Tipo A/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Sequência de Bases , Linhagem Celular , DNA Complementar/genética , Estabilidade de Medicamentos , Fase G1 , Humanos , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Camundongos , Camundongos Knockout , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética
19.
Proc Natl Acad Sci U S A ; 101(26): 9677-82, 2004 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15210943

RESUMO

The retinoblastoma protein (pRB) is a critical regulator of cell proliferation and differentiation and an important tumor suppressor. In the G(1) phase of the cell cycle, pRB localizes to perinucleolar sites associated with lamin A/C intranuclear foci. Here, we examine pRB function in cells lacking lamin A/C, finding that pRB levels are dramatically decreased and that the remaining pRB is mislocalized. We demonstrate that A-type lamins protect pRB from proteasomal degradation. Both pRB levels and localization are restored upon reintroduction of lamin A. Lmna(-/-) cells resemble Rb(-/-) cells, exhibiting altered cell-cycle properties and reduced capacity to undergo cell-cycle arrest in response to DNA damage. These findings establish a functional link between a core nuclear structural component and an important cell-cycle regulator. They further raise the possibility that altered pRB function may be a contributing factor in dystrophic syndromes arising from LMNA mutation.


Assuntos
Núcleo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Lamina Tipo A/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteína do Retinoblastoma/metabolismo , Células 3T3 , Transporte Ativo do Núcleo Celular , Animais , Ciclo Celular , Fibroblastos , Deleção de Genes , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA