Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 45-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304914

RESUMO

Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. Prior work demonstrates that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) results in enhanced cellular internalization and prolongs NB retention with persistent, cancer-cell specific acoustic activity. In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency unfocused therapeutic US (TUS) will lead to selective damage and induce a specific therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. We observed that the internalized NBs and cellular compartments were disrupted after the PSMA-NB + TUS (targeted NB therapy or TNT) application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.4 ± 9.3 %, p < 0.01) compared to controls. TNT treatment significantly inhibited the PSMA expressing tumor growth and increased median survival time by 103 %, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in an orthotopic rabbit PCa model. Results demonstrate that cavitation of PSMA-NBs internalized via receptor-mediated endocytosis into target PCa cells using unfocused ultrasound results in significant, tumor-specific bioeffects. The effects, while not lethal to PSMA-expressing cancer cells in vitro, result in significant in vivo reduction in tumor progression in two models of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

2.
J Control Release ; 367: 135-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237687

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.


Assuntos
Neoplasias Hepáticas , Microbolhas , Ratos , Animais , Humanos , Distribuição Tecidual , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral
3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045236

RESUMO

The tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the 'enhanced permeability and retention effect' or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.

4.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732235

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.

5.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745586

RESUMO

Rationale: Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. We have previously shown that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) enhances the cellular internalization and prolongs retention of NBs with persistent acoustic activity (~hrs.). In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency therapeutic US (TUS) will lead to selective damage and induce a therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. Methods: PSMA-targeted NBs were formulated by following our previously established protocol. Cellular internalization of fluorescent PSMA-NBs was evaluated by confocal imaging using late endosome/lysosome staining pre- and post-TUS application. Two animal models were used to assess the technique. Mice with dual tumors (PSMA expressing and PSMA negative) received PSMA-NB injection via the tail vein followed by TUS 1 hr. post injection (termed, targeted NB therapy or TNT). Twenty-four hours after treatment mice were euthanized and tumor cell apoptosis evaluated via TUNEL staining. Mice with single tumors (either PSMA + or -) were used for survival studies. Tumor size was measured for 80 days after four consecutive TNT treatments (every 3 days). To test the approach in a larger model, immunosuppressed rabbits with orthotopic human PSMA expressing tumors received PSMA-NB injection via the tail vein followed by TUS 30 min after injection. Tumor progression was assessed via US imaging and at the end point apoptosis was measured via TUNEL staining. Results: In vitro TNT studies using confocal microscopy showed that the internalized NBs and cellular compartments were disrupted after the TUS application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.45 ± 9.3%, p < 0.01) compared to the other groups. TNT treatment significantly inhibited the PSMA (+) tumor growth and overall survival significantly improved (median survival time increase by 103%, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in the rabbit model in intraprostatic (90%) and in extraprostatic lesions (94%) (p = 0.069 and 0.003, respectively). Conclusion: We demonstrate for the first time the effect of PSMA-targeted nanobubble intracellular cavitation on cancer cell viability and tumor progression in two animal models. Data demonstrate that the targeted nanobubble therapy (TNT) approach relies primarily on mechanical disruption of intracellular vesicles and the resulting bioeffects appear to be more specific to target cancer cells expressing the PSMA receptor. The effect, while not lethal in vitro, resulted in significant tumor apoptosis in vivo in both a mouse and a rabbit model of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

6.
Nanotheranostics ; 6(3): 270-285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223380

RESUMO

Gas-core nanoscale bubbles (or nanobubbles) have gained significant recent attention as promising contrast agents for cancer molecular imaging using medical ultrasound. Previous work has shown that active targeting of nanobubbles to tumor biomarkers such as the prostate-specific membrane antigen (PSMA) significantly prolongs ultrasound signal enhancement, which is a critical feature for successful tumor diagnosis. However, the specific mechanism behind this effect is not well understood, and has not been previously studied in detail. Thus, in the current work, we investigated the process of PMSA- targeted nanobubble transport in tumors across different scales from in vivo whole tumor imaging using high-frequency dynamic contrast-enhanced ultrasound to intracellular confocal imaging and, molecularly using headspace gas chromatography/mass spectrometry. Data demonstrated that, indeed, molecular targeting of nanobubbles to the PSMA biomarker prolongs their tumor uptake and retention across the entire tumor volume, but with variability due to the expected tumor heterogeneity. Importantly, in vitro, the active targeting of NBs results in internalization via receptor-mediated endocytosis into the target cells, and the co-localization with intracellular vesicles (late-stage endosomes/lysosomes) significantly prolongs perfluorocarbon gas retention within the cells. This has not been directly observed previously. These results support the potential for nanobubbles to enable highly specific, background-free diagnostic imaging of the target cells/tissues using ultrasound.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/diagnóstico por imagem , Ultrassonografia/métodos
7.
Bioconjug Chem ; 33(6): 1057-1068, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677967

RESUMO

Sonodynamic therapy (SDT) is a novel promising approach for the minimally invasive treatment of cancer derived from photodynamic therapy (PDT). In this study, we have explored an effective sonosensitizer for SDT by loading the iridium(III) complex [Ir(ppy)2(en)] OOCCH3, where ppy = 2-phenylpyridine and en = ethylenediamine], from now on referred to as Ir, with high photosensitizing ability, into echogenic nanobubbles (Ir-NBs). Akin to photosensitizers, sonosensitizers are acoustically activated by deep-tissue-penetrating low-frequency ultrasound (US) resulting in a localized therapeutic effect attributed to an excessive generation of reactive oxygen species (ROS). The Ir-NB formulation was optimized, and the in vitro characterizations were carried out, including physical properties, acoustic performance, intracellular ROS generation, and cytotoxicity against two human cancer cell lines. Ir-NBs had an average size of 303.3 ± 91.7 nm with a bubble concentration of 9.28 × 1010 particles/mL immediately following production. We found that the initial Ir feeding concentration had a negligible effect on the NB size, but affected the bubble concentration as well as the acoustic performance of the NBs. Through a combination of sonication and Ir-NBs treatment, an increase of 68.8% and 69.6% cytotoxicity in human ovarian cancer cells (OVCAR-3) and human breast cancer cells (MCF-7), respectively, was observed compared to the application of Ir-NBs alone. Furthermore, Ir-NBs exposed to the US also induced the highest levels of intracellular ROS generation compared to free Ir and free Ir with empty NBs. The combination of these results suggests that the differences in treatment efficacy is a direct result of acoustic cavitation. These results provide evidence that US activated Ir-loaded NBs have the potential to become an effective sonosensitizer for SDT.


Assuntos
Irídio , Neoplasias Ovarianas , Apoptose , Linhagem Celular Tumoral , Feminino , Fluorocarbonos , Humanos , Irídio/farmacologia , Neoplasias Ovarianas/terapia , Espécies Reativas de Oxigênio/metabolismo
8.
Front Pharmacol ; 11: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477125

RESUMO

Drug delivery to solid tumors using echogenic nanobubbles (NBs) and ultrasound (US) has recently gained significant interest. The approach combines attributes of nanomedicine and the enhanced permeation and retention (EPR) effect with the documented benefits of ultrasound to improve tumor drug distribution and treatment outcomes. However, optimized drug loading strategies, the drug-carrying capacity of NBs and their drug delivery efficiency have not been explored in depth and remain unclear. Here, we report for the first time on the development of a novel deprotonated hydrophobic doxorubicin-loaded C3F8 nanobubble (hDox-NB) for more effective US-mediated drug delivery. In this study, the size distribution and yield of hDox-NBs were measured via resonant mass measurement, while their drug-loading capacity was determined using a centrifugal filter technique. In vitro acoustic properties including contrast-imaging enhancement, initial echogenic signal, and decay were assessed and compared to doxorubicin hydrochloride loaded-NBs (Dox.HCl-NBs). In addition, in vitro therapeutic efficacy of hDox-NBs was evaluated by cytotoxicity assay in human ovarian cancer cells (OVCAR-3). The results showed that the hDox-NBs were small (300.7 ± 4.6 nm), and the drug loading content was significantly enhanced (2 fold higher) compared to Dox.HCl-NBs. Unexpectedly, the in vitro acoustic performance was also improved by inclusion of hDox into NBs. hDox-NB showed higher initial US signal and a reduced signal decay rate compared to Dox.HCl-NBs. Furthermore, hDox-NBs combined with higher intensity US exhibited an excellent therapeutic efficacy in human ovarian cancer cells as shown in a reduction in cell viability. These results suggest that hDox-NBs could be considered as a promising theranostic agent to achieve a more effective noninvasive US-mediated drug delivery for cancer treatment.

9.
J Pharm Sci ; 108(9): 3091-3098, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095958

RESUMO

Issues with limited intratumoral drug penetration and heterogeneous drug distribution continue to impede the therapeutic efficacy of nanomedicine-based delivery systems. Ultrasound (US)-enhanced drug delivery has emerged as one effective means of overcoming these challenges. Acoustic cavitation in the presence of nanoparticles has shown to increase the cellular uptake and distribution of chemotherapeutic agents in vivo. In this study, we investigated the potential of a drug-loaded echogenic nanoscale bubbles in combination with low frequency (3 MHz), high energy (2 W/cm2) US for antitumor therapy. The doxorubicin-loaded nanobubbles (Dox-NBs) stabilized with an interpenetrating polymer mesh were 171.5 ± 20.9 nm in diameter. When used in combination with therapeutic US, Dox-NBs combined with free drug showed significantly higher (*p < 0.05) intracellular uptake and therapeutic efficacy compared with free drug. When injected intravenously in vivo, Dox-NBs + therapeutic US showed significantly higher (*p < 0.05) accumulation and better distribution of Dox in tumors when compared with free drug. This strategy provides an effective and simple method to increase the local dose and distribution of otherwise systemically toxic chemotherapeutic agents for cancer therapies.


Assuntos
Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Microbolhas , Terapia por Ultrassom/métodos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Terapia Combinada/métodos , Doxorrubicina/administração & dosagem , Humanos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Distribuição Tecidual/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Langmuir ; 35(31): 10192-10202, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913884

RESUMO

Ultrasound (US) is a widely used diagnostic imaging tool because it is inexpensive, safe, portable, and broadly accessible. Ultrasound contrast agents (UCAs) are employed to enhance backscatter echo and improve imaging contrast. The most frequently utilized UCAs are echogenic bubbles made with a phospholipid or protein-stabilized hydrophobic gas core. While clinically utilized, applications of UCAs are often limited by rapid signal decay (<5 min) in vivo under typical ultrasound imaging protocols. Here, we report on a formulation of lipid shell-stabilized perfluoropropane (C3F8) microbubbles and nanobubbles with a significantly prolonged in vivo stability. Microbubbles (875 ± 280 nm) of the target size were prepared by utilizing a multiple-step centrifugation cycle, while nanobubbles (299 ± 189 nm) were isolated from the activated vial using a single centrifugation step. To provide in-depth acoustic characterization of the new construct we evaluated the effect of size and concentration on their in vitro and in vivo performance. In vitro and in vivo characterization were carried out for a range of bubble concentrations normalized by total gas volume quantified via headspace gas chromatography/mass spectrometry (GC/MS). In vitro characterization revealed that nanobubbles at different concentrations are more consistently stable over time with the highest and lowest dilutions (50-fold decrease) only differing in US signal after 8 min exposure by 10.34%, while for microbubbles the difference was 86.46%. As expected, due to the difference in hydrodynamic diameter and scattering cross section difference, nanobubbles showed lower overall initial signal intensity. In vivo experiments showed that both microbubbles and nanobubbles with similar initial peak signal intensity are comparably stable over time with 66.8% and 60.6% remaining signal after 30 min, respectively. This study demonstrates that bubble concentration has significant effects on the persistence of both microbubbles and nanobubbles in vitro and in vivo, but the effects are more pronounced in larger bubbles. These effects should be taken into account when selecting the appropriate bubble parameters for future imaging applications.


Assuntos
Meios de Contraste/química , Microbolhas , Nanoestruturas/química , Animais , Fluorocarbonos/química , Rim/diagnóstico por imagem , Camundongos , Tamanho da Partícula , Ácidos Fosfatídicos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ultrassonografia/métodos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4221-4224, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441285

RESUMO

A sustained release that can be controllable is an ultimate goal for the delivery of drugs in drug delivery systems including in situ depots. However, one of the major persistent problems in the controlled release delivery system development is the initial burst release of the loaded drug which can minimize the effectiveness of the system. Our primary research objective was to reduce the initial burst release of Doxorubicin (Dox) encapsulated in polymeric depots by incorporating deprotonated Dox into the depots. The drug release profile and cytotoxicity effect of various concentrations of hydrophobic Dox-loaded depots were studied. In the first 24 hours after forming the depots, the release of Dox reached 82.9 ± 0.6% in Dox·HCl depots. Interestingly, the initial burst releases of 5, 10 and 15% wt/wt hydrophobic Dox-loaded PLEC depots were reduced to 48.5 ± 10.0, 29.2 ± 7.8 and 18.9 ± 0.9%, respectively. Moreover, 15% hydrophobic Dox-loaded PLEC depots maintained their stability up to 14 days and their in vitro cytotoxicity ability against human hepatocellular carcinoma cell line (HepG2). Taken together, this study suggested that the presence of hydrophobic Dox in Dox-loaded PLEC depots reduced the initial burst release phenomenon of the drug and the depots still maintained their function as a local drug delivery system.


Assuntos
Portadores de Fármacos , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Hepáticas , Polímeros
12.
Adv Cancer Res ; 139: 57-84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29941107

RESUMO

Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.


Assuntos
Antineoplásicos/administração & dosagem , Meios de Contraste/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Ultrassom/métodos , Animais , Antineoplásicos/química , Meios de Contraste/química , Humanos , Microbolhas , Neoplasias/diagnóstico por imagem
13.
Ann Biomed Eng ; 45(12): 2879-2887, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28929267

RESUMO

One of the challenges in developing sustained-release local drug delivery systems is the limited treatment volume that can be achieved. In this work, we examine the effectiveness of using low frequency, high intensity ultrasound to promote the spatial penetration of drug molecules away from the implant/injection site boundary upon release from injectable, phase inverting poly(lactic acid-co-glycolic acid) (PLGA) implants. Fluorescein-loaded PLGA solutions were injected into poly(acrylamide) phantoms, and the constructs were treated daily for 14 days with ultrasound at 2.2 W/cm2 for 10 min. The 2D distribution of fluorescein within the phantoms was quantified using fluorescence imaging. Implants receiving ultrasound irradiation showed a 1.7-5.6 fold increase (p < 0.05) in fluorescence intensity and penetration distance, with the maximum increase observed 5 days post-implantation. However, this evidence was not seen when the same experiment was also carried out in phosphate buffer saline (pH 7.4). Results suggest an active role of ultrasound in local molecular transport in the phantom. An increase of fluorescein release and penetration depth in phantoms can be accomplished through brief application of ultrasound. This simple technique offers an opportunity to eventually enhance the therapeutic efficacy and broaden the application of local drug delivery systems.


Assuntos
Preparações de Ação Retardada/química , Preparações de Ação Retardada/efeitos da radiação , Fluoresceína/química , Ondas de Choque de Alta Energia , Ácido Láctico/química , Ácido Poliglicólico/química , Sonicação/métodos , Preparações de Ação Retardada/administração & dosagem , Difusão/efeitos da radiação , Fluoresceína/administração & dosagem , Ácido Láctico/efeitos da radiação , Ácido Poliglicólico/efeitos da radiação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Distribuição Tecidual
14.
J Mater Sci Mater Med ; 28(7): 101, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534285

RESUMO

The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-ß-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-ß-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots.


Assuntos
Implantes Absorvíveis , Preparações de Ação Retardada/síntese química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Implantes de Medicamento/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Polímeros/química , Absorção Fisico-Química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalização/métodos , Preparações de Ação Retardada/administração & dosagem , Difusão , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Implantes de Medicamento/síntese química , Células Hep G2 , Humanos , Injeções Intralesionais/métodos , Neoplasias Hepáticas/patologia , Resultado do Tratamento
15.
Pharm Dev Technol ; 22(5): 652-658, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27056587

RESUMO

In this work, paclitaxel-encapsulated polymeric depots were prepared and characterized as drug delivery system for cancer chemotherapy against hepatocellular carcinoma. Effects of different parameters, including drug-loading content, polymer concentration and depot weight on depot formation, percentage of sustained-release taxol and drug release profile were evaluated. Paclitaxel-loaded depots were successfully formed at the polymer concentration above 25% w/v. For all formulations, paclitaxel could be encapsulated with very high percentage of sustained-release taxol (>90%). The release rate of paclitaxel from depots could be controlled by the amount of drug-loading content, polymer concentration and depot weight. Cytotoxicity against liver cancer cell line, HepG2, was evaluated by medium extraction method. Paclitaxel releasing from depots showed cytotoxic effect against HepG2 at different incubation times, whereas blank depots exhibited no cytotoxicity.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos
16.
Pharm Res ; 33(12): 2891-2903, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27495180

RESUMO

PURPOSE: SN-38, a potent chemotherapeutic drug, has not been used clinically because of its severe side effects and poor solubility. In this work, we aimed to evaluate the effect of dose and multiple injections of SN-38-loaded polymeric depots on antitumor efficacy and toxicity in vivo. METHODS: Preparation and characterization of SN-38-loaded depots were performed and evaluated in vitro using human glioblastoma cell line, U-87MG. Antitumor efficacy with different depot administrations including dose, position of depot injection and number of injections were evaluated in tumor model in nude mice. RESULTS: Depots encapsulated SN-38 with high encapsulation efficiency (~98.3%). High amount of SN-38 (3.0 ± 0.1 mg) was prolonged and controlled release over time and showed anticancer activity against U-87MG cell line in vitro. For one course administration, depots exhibited better antitumor efficacy and reduced toxicity compared to free SN-38. Elevated doses and multiple injections of SN-38-loaded depots and free SN-38 provided greater tumor growth inhibition and animal survival. All animals received SN-38-loaded depots were well tolerated and survived while most of those received free SN-38 died at day 30. Free SN-38 showed severe toxic effect compared to minimal toxicity from SN-38-loaded depots which was due to lower SN-38 level in systemic circulation. Fluorescence imaging and histopathology confirmed that SN-38 released from depots was detected throughout tumors 35 days post administration. CONCLUSIONS: SN-38-loaded depots were proved as a promising new treatment for highly invasive glioblastoma multiforme with low acute toxicity due to controlled release of SN-38.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Glioblastoma/tratamento farmacológico , Poliésteres/química , Polietilenoglicóis/química , Animais , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Xenoenxertos , Humanos , Injeções , Irinotecano , Camundongos Endogâmicos BALB C , Camundongos Nus
17.
Exp Biol Med (Maywood) ; 239(12): 1619-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24990485

RESUMO

SN-38 is a highly potent anticancer drug but its poor solubility in aqueous solvent and adverse side effects limit clinical applications. To overcome these limitations, SN-38-loaded-injectable drug delivery depots have been intratumorally administered in xenograft tumor model in nude mice. The extraction and high performance liquid chromatography (HPLC) were performed in order to determine the amount of SN-38 inside tumors. SN-38 was extracted from tumors using DMSO. HPLC analysis was validated and resulted in linearity over the concentration range from 0.03 to 150 µg/mL (r(2) ≥ 0.998). Lower limit of detection (LLOD) and lower limit of quantitation (LLOQ) were 0.308 µg/mL and 1.02 µg/mL, respectively. The extraction efficiency (% recovery) of SN-38 in porcine tissues was similar to that of tumors which provided more than 90% recovery in all concentrations. Moreover, the variability of precision and accuracy within and between-day were less than 15%. Therefore, this extraction and HPLC protocol was applied to determine the amount of SN-38 in tumors. Results show higher remaining amount of SN-38 in tumor from SN-38-loaded polymeric depots than that of SN-38 solution. These results reveal that SN-38-loaded polymeric depots can prevent the leakage of free-drug out of tumors and can sustain higher level of SN-38 inside tumor. Thus, the therapeutic efficacy can be elevated by SN-38-loaded polymeric depots.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Sistemas de Liberação de Medicamentos , Polímeros/administração & dosagem , Animais , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/análise , Camptotecina/isolamento & purificação , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Modelos Animais de Doenças , Irinotecano , Camundongos Nus
18.
Artigo em Inglês | MEDLINE | ID: mdl-22255030

RESUMO

One of the most useful techniques to treat cancer is chemotherapy. However, anticancer drugs, such as SN-38, have limited solubility with strong side effects. This work aims to use SN-38:ß-cyclodextrin (ß-CD) inclusion complex for an injectable polymeric in situ forming implant containing poly(ethylene glycol) (PEG), poly(ε-caprolactone), and poly(D, L-lactide). It was found that implant formation and SN-38 encapsulation efficiency directly depended on weight ratio of SN-38 and ß-CD. At the ratio of SN-38:ß-CD of 1:7, the implant could not be formed perfectly and had lower encapsulation efficiency. Reduction of the amount of ß-CD to the ratio of 1:3 showed the higher encapsulation efficiency at 89.7 %. SN-38 release rate was also found to depend on ß-CD content and the implant weight. In addition, their active form was protected when encapsulated inside implants.


Assuntos
Antineoplásicos Fitogênicos/química , Camptotecina/análogos & derivados , Implantes de Medicamento , Polímeros/química , beta-Ciclodextrinas/química , Camptotecina/química , Irinotecano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA