Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053855

RESUMO

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Assuntos
Encefalopatias/genética , Fissura Palatina/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Fácies , Deficiência Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microcefalia/genética , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Linhagem , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
2.
Mol Brain ; 10(1): 30, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716058

RESUMO

A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (Srf CaMKCreERT2 ) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals.Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.


Assuntos
Epilepsia/genética , Epilepsia/patologia , Hipocampo/patologia , Rede Nervosa/patologia , Convulsões/genética , Convulsões/patologia , Fator de Resposta Sérica/metabolismo , Transcrição Gênica , Animais , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/metabolismo , Epilepsia/induzido quimicamente , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Pilocarpina , Reprodutibilidade dos Testes
3.
Neurology ; 87(11): 1140-51, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27521439

RESUMO

OBJECTIVE: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations. METHODS: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected. Functional analysis of 4 selected mutations was performed using the Xenopus laevis oocyte expression system. RESULTS: The study included 16 novel probands and 3 additional family members with a disease-causing mutation in the GABRA1 gene. The phenotypic spectrum varied from unspecified epilepsy (1), juvenile myoclonic epilepsy (2), photosensitive idiopathic generalized epilepsy (1), and generalized epilepsy with febrile seizures plus (1) to severe epileptic encephalopathies (11). In the epileptic encephalopathy group, the patients had seizures beginning between the first day of life and 15 months, with a mean of 7 months. Predominant seizure types in all patients were tonic-clonic in 9 participants (56%) and myoclonic seizures in 5 (31%). EEG showed a generalized photoparoxysmal response in 6 patients (37%). Four selected mutations studied functionally revealed a loss of function, without a clear genotype-phenotype correlation. CONCLUSIONS: GABRA1 mutations make a significant contribution to the genetic etiology of both benign and severe epilepsy syndromes. Myoclonic and tonic-clonic seizures with pathologic response to photic stimulation are common and shared features in both mild and severe phenotypes.


Assuntos
Epilepsia/genética , Mutação , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Oócitos , Fenótipo , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
4.
J Neurochem ; 115(2): 450-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20681951

RESUMO

Nucleotides act as early signals for microglial recruitment to sites of CNS injury. As microglial motility and activation can be influenced by several local factors at the site of the lesion, we investigated the effects of interferon-gamma, lipopolysaccharide (LPS) or transforming growth factor-ß (TGF-ß) addition to mixed glial cell cultures, on microglial migration in response to ADP, P2Y12 and P2Y1 mRNA expression as well as on the expression of an array of genes associated with the process of microglial activation. First, we demonstrated, by pharmacological inhibition and by using small interfering RNAs, that in addition to P2Y12, P2Y1 is involved in ADP-stimulated microglial migration. The ability of specific agonists to induce Ca(2+) mobilization further confirmed the expression of functional P2Y receptors in microglia. Then, we found that migratory capability and expression of both P2Y receptors were abrogated in microglial cells from LPS-stimulated mixed glial cultures, while TGF-ß increased ADP-induced migration and the expression of P2Y12 and P2Y1 receptors. Interferon-gamma did not influence receptor expression or microglial migration. Finally, the patterns of gene expression induced in microglia by LPS or TGF-ß treatment of mixed glial cultures were clearly distinct. LPS induced a set of classical pro-inflammatory genes, whereas TGF-ß increased the expression of genes associated with atypical microglial phenotype, namely arginase-1 and TGF-ß genes. These results imply that both P2Y1 and P2Y12 may guide microglia toward the lesion. They also suggest that the modulation of microglial purinergic receptors expression by local factors, through direct and/or astrocyte-mediated actions, may represent a novel mechanism affecting neuroinflammatory response.


Assuntos
Movimento Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Microglia/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y12 , Tionucleotídeos/farmacologia , Fator de Crescimento Transformador beta/agonistas , Fator de Crescimento Transformador beta/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA