Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169065, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065496

RESUMO

Nitrate has been a dominant component of PM2.5 since the stringent emission control measures implemented in China in 2013. Clarifying key physical and chemical processes influencing nitrate concentrations is crucial for eradicating heavy air pollution in China. In this study, we explored dominant processes impacting nitrate concentrations in Shandong of the North China Plain during three haze events from 9 to 25 December 2021, named cases P1 (94.46 (30.85) µg m-3 for PM2.5 (nitrate)), P2 (148.95 (50.12) µg m-3) and P3 (88.03 (29.21) µg m-3), by using the Weather Research and Forecasting/Chemistry model with an integrated process rate analysis scheme and updated heterogeneous hydrolysis of dinitrogen pentoxide on the wet aerosol surface (HET-N2O5) and additional nitrous acid (HONO) sources (AS-HONO). The results showed that nitrate increases in the three cases were attributed to aerosol chemistry, whereas nitrate decreases were due mainly to the vertical mixing process in cases P1 and P2 and to the advection process in case P3. HET-N2O5 (the reaction of OH + NO2) contributed 45 % (51 %) of the HNO3 production rate during the study period. AS-HONO produced a nitrate enhancement of 24 % in case P1, 12 % in case P2 and 19 % in case P3, and a HNO3 production rate enhancement of 0.79- 0.97 (0.18- 0.60) µg m-3 h-1 through the reaction of OH + NO2 (HET-N2O5) in the three cases. This study implies that using suitable parameterization schemes for heterogeneous reactions on aerosol and ground surfaces and nitrate photolysis is vital in simulations of HONO and nitrate, and the MOSAIC module for aerosol water simulations needs to be improved.

2.
Huan Jing Ke Xue ; 44(12): 6463-6473, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098375

RESUMO

To explore the characteristics and sources of PM2.5 pollution in winter of Handan City in the past five years, PM2.5 samples were collected in winter of 2016 to 2020, and eight types of water-soluble inorganic ions were analyzed. The principal component analysis(PCA) model was used to analyze the types of pollution sources, and the backward trajectory and potential source contribution factor(PSCF) were used to simulate the transport trajectory and pollution sources. The results showed that the PM2.5 concentration in winter of 2018 was the highest, increasing by 60.44%, 25.46%, 91.43%, and 21.53% compared with that in 2016, 2017, 2019, and 2020, respectively. In the winter of 2020, the concentration of water-soluble inorganic ions(WSIIs) decreased by 18.86% compared with that in 2016, and WSIIs/PM2.5 decreased to 26.69%. The PM2.5 concentration(110.20-209.65 µg·m-3) at night was higher than that in the daytime(95.21-193.00 µg·m-3). The concentration of NO3- and NH4+ increased more at night. On the contrary, the concentration and proportion of Cl-decreased annually. In the winter of 2020, the daytime concentrations of K+, Ca2+, Na+, and Mg2+ decreased by 69.72%, 97.10%, 90.91%, and 74.51% compared with that of 2018, and the night concentrations decreased by 66.67%, 95.38%, 91.67%, and 77.78%, respectively. In 2020, the concentrations of NO3-, SO42-, and NH4+ on polluted days were 4.90, 5.80, and 5.20 times those on non-polluted days, with the largest increase in five years. PCA results showed that the main sources of pollution were secondary sources, coal sources, biomass combustion sources, and road and building dust. The backward trajectory and PSCF analysis results showed that pollution transport continued to exist between south-central Mongolia and central Inner Mongolia in winter and was influenced by the transport between northern Henan and Handan and central Hebei and Handan in winter of 2016 and 2017, whereas the latter had a greater impact in winter of 2018-2020.

3.
Environ Res ; 216(Pt 1): 114469, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195159

RESUMO

In order to investigate the impact of "Blue Sky War" implemented during 2018-2020 on carbonaceous aerosols in Beijing-Tianjin-Hebei (BTH) region, China, fine particulate matter (PM2.5) samples were collected simultaneously in Tianjin and Handan in three consecutive winters from 2018 to 2020. Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with the same thermal-optical methods and analysis protocols. Significant reductions in primary organic carbon (POC) and EC concentrations were observed both in Tianjin and Handan, with decreasing rates of 0.65 and 2.95 µg m-3 yr-1 for POC and 0.13 and 0.64 µg m-3 yr-1 for EC, respectively. The measured absorption coefficients of EC (babs, EC) also decreased year by year, with a decreasing rate of 1.82 and 6.16 Mm-1 yr-1 in Tianjin and Handan, respectively. The estimated secondary organic carbon (SOC) concentrations decreased first and then increased in both Tianjin and Handan, accounting for more than half of the total OC in winter of 2020-2021 and with increasing contributions especially in highly polluted days. SOC was recognized as one of key factors influencing EC light absorption. EC in the two cities was relatively more related to coal combustion and industrial sources. The reductions of primary carbonaceous components may be attributed to the air quality regulations targeting coal combustion and industrial sources emissions in BTH area. Potential source contribution function (PSCF) analysis results indicated that the major source areas of OC and EC in Tianjin were the southwest region of the sampling site, while the southeast areas for Handan. These findings demonstrated the effectiveness of air quality regulation in primary emissions in typical polluted cities in BTH region and highlighted the needs for further control and in-depth investigation of SOC formation along with implementation of air pollution control act in the future.


Assuntos
Poluentes Atmosféricos , Cidades , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Aerossóis/análise , Material Particulado/análise , Carvão Mineral/análise , Carbono/análise , Estações do Ano , China
4.
Huan Jing Ke Xue ; 43(3): 1159-1169, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258180

RESUMO

In order to explore the chemical composition and source profiles of atmospheric particulate matter in winter in the northern area of Handan, a heavily polluted city in the southern part of North China, PM1 and PM2.5 samples were collected and analyzed from November 23 to December 12, 2020. During the observation period, the daily average ρ(PM1)and ρ(PM2.5) were 114.53 µg·m-3 and 124.25 µg·m-3, respectively, and the ratio of PM1/PM2.5 was 83.3%-95.3%, which was significantly higher than those of other cities in the Beijing-Tianjin-Hebei region, indicating that air pollution of fine particulate matter, especially sub-micron particulate matter, was more serious in Handan. Compared with that during clean days, SNA (SO42-, NO3-, and NH4+) in PM1 increased by 14.5% during heavy pollution, and SNA in PM2.5 increased by 15.2%; the nitrogen oxidation rate (NOR) in particular increased by three times on heavy pollution days. With the deepening of pollution, the proportion of secondary organic carbon (SOC) in PM1 and PM2.5 increased by 22.0% and 12.5%, respectively. SOC tended to accumulate in small particles, whereas the proportion of primary organic carbon (POC) and elemental carbon (EC) in PM1 decreased by 15.4% and 6.6%, and the POC and EC in PM2.5 decreased by 8.2% and 4.3%, respectively. The above results indicated that secondary formation played an important role in the heavy pollution of particulate matter. With the aggravation of air pollution, the liquid water content of the particles increased, and both the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) increased, indicating that the aqueous phase chemical reaction made an important contribution to the formation of secondary inorganics. With the deepening of pollution, inorganic elements were on the rise; Se, As, Pb, and Zn were highly enriched in inorganic elements. The results of principal component analysis (PCA) showed that secondary formation, industrial emissions, vehicle exhaust, and biomass burning emissions were the main sources of particulate pollutants. The results of potential source contribution factor analysis (PSCF) showed that the high value areas of SO42-, NO3-, EC, OC, and inorganic elements were mainly from the north and southwest directions of the observation area.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
5.
Sci Total Environ ; 802: 149630, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454137

RESUMO

Severe haze occurrence in the north of the North China Plain (NCP) is recognized as a consequence of the regional transport of pollutants initially from the south and then the rapid formation of secondary pollutants in the local air. However, the origin of pollutants causing haze in the southern NCP has not yet been elucidated even through careful data observation. Based on the contents of water-soluble inorganic ions in PM2.5 samples collected during two severe haze episodes in Zhengzhou, a mega city located on the southern edge of the NCP, we estimated the contributions of local primary emissions and secondary pollutants to haze occurrence. On average, Na+, K+, and Ca2+ mainly originated from anthropogenic sources, and their anthropogenic fractions had proportions of 97.5%, 93.9%, and 76.5% in their respective total mass. Anions Cl- and SO42- substantially originated from not only produced substantially via secondary formation but also from primary emissions, and their primary proportions in their respective total mass were 51.1% and 30.8%. In contrast, NH4+ and NO3- were dominated by secondary formation. The increase in PM2.5 was mainly caused by the formation of secondary inorganic (29.1%) and organic species (57.2%) and the primary anthropogenic emissions (12.5%). These results indicated that the haze at the southern edge of the NCP was mainly caused by pollutants in the local areas. Compared to the haze in the northern NCP, the haze in the southern NCP edge had a higher PM2.5 mass concentration and a higher proportion of secondary species, but a lower proportion of primary species, indicating the high heterogeneity of winter haze over the NCP.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Íons , Material Particulado/análise , Estações do Ano
6.
Environ Pollut ; 272: 116420, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433345

RESUMO

Rural residential emissions contribute significantly to regional air pollution in China, but our understanding on how residential solid fuel burning influences the village outdoor air quality is limited. In this study, we compared the fine particulate matter (PM2.5) composition and individual particle characteristics from 11 to 18 January 2017 at a village and an urban site in northern China. At the village site, each day was divided into four periods: cooking (07:30-10:00; 16:00-17:00), daytime (10:00-16:00), heating (17:00-24:00), and midnight (00:00-07:30) periods. The highest PM2.5 concentration occurred during the cooking period (236 ± 88 µg m-3), which was characterized by high concentrations of K+ and abundant primary OM-K particles (i.e., organic matter mixed with K-salts) emitted from residential biomass burning. The second highest PM2.5 concentration was found during the heating period (161 ± 97 µg m-3), and the PM2.5 contained abundant spherical primary OM particles (i.e., tarballs) emitted from residential coal burning. The primary emissions from residential solid fuel burning resulted in 75% of the village OM by mass consisting of primary OM and 67% of the village aerosol particles by number internally mixing with primary OM particles. The village PM2.5 composition was different from that of the urban PM2.5, with the former containing more OM (47% vs 32%) and less secondary inorganic ions (30% vs 46%). Individual primary OM-K and tarballs were abundant in the village air. These results suggest a large contribution of village residential emissions in the winter to village air pollution. Our study highlights that the residential health in villages of northern China should be paid more attention because of high PM2.5 concentrations and abundant toxic particles during the cooking and heating periods per day in winter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
7.
Sci Total Environ ; 762: 143081, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33190904

RESUMO

The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 µg m-3. Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 µm than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 µm, which were a bit larger than that during Phase 2 (0.24 µm). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles.

8.
Environ Pollut ; 264: 114769, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32428816

RESUMO

Soluble iron (FeS) in aerosols contributes to free oxygen radical generation with implications for human health, and potentially catalyzes sulfur dioxide oxidation. It is also an important external source of micronutrients for ocean ecosystems. However, factors controlling FeS concentration and its contribution to total iron (FeT) in aerosols remain poorly understand. Here, FeS and FeT in PM2.5 was studied at four urban sites in eastern China from 21 to 31 December, 2017. Average FeT (869-1490 ng m-3) and FeS (24-68 ng m-3) concentrations were higher in northern than southern China cities, but Fe solubility (%FeS, 2.7-5.0%) showed no spatial pattern. Correlation analyses suggested %FeS was strongly correlated with FeS and PM2.5 instead of FeT concentrations. Individual particle observations confirmed that more than 65% of nano-sized Fe-containing particles were internally mixed with sulfates and nitrates. Furthermore, there was a high correlation between sulfates or nitrates/FeT molar ratio and %FeS. We also found that the sulfates/nitrates had weaker effects on %FeS at RH < 50% than at RH > 50%, suggesting RH as indirect factor can influence %FeS in PM2.5. These results suggest an important role of chemical processing in enhancing %FeS in the polluted atmosphere.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , China , Cidades , Ecossistema , Monitoramento Ambiental , Humanos , Ferro/análise , Nitratos/análise , Material Particulado/análise , Solubilidade , Sulfatos/análise
9.
Environ Pollut ; 231(Pt 1): 357-366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28810205

RESUMO

The characteristics of aerosol particles have been poorly evaluated even though haze episodes frequently occur in winter in Northeast China. OC/EC analysis, ion chromatography, and transmission electron microscopy (TEM) were used to investigate the organic carbon (OC) and elemental carbon (EC), and soluble ions in PM2.5 and the mixing state of individual particles during a severe wintertime haze episode in Northeast China. The organic matter (OM), NH4+, SO42-, and NO3- concentrations in PM2.5 were 89.5 µg/m3, 24.2 µg/m3, 28.1 µg/m3, and 32.8 µg/m3 on the haze days, respectively. TEM observations further showed that over 80% of the haze particles contained primary organic aerosols (POAs). Based on a comparison of the data obtained during the haze formation, we generate the following synthetic model of the process: (1) Stable synoptic meteorological conditions drove the haze formation. (2) The early stage of haze formation (light or moderate haze) was mainly caused by the enrichment of POAs from coal burning for household heating and cooking. (3) High levels of secondary organic aerosols (SOAs), sulfates, and nitrates formation via heterogeneous reactions together with POAs accumulation promoted to the evolution from light or moderate to severe haze. Compared to the severe haze episodes over the North China Plain, the PM2.5 in Northeast China analyzed in the present study contained similar sulfate, higher SOA, and lower nitrate contents. Our results suggest that most of the POAs and secondary particles were likely related to emissions from coal-burning residential stoves in rural outskirts and small boilers in urban areas. The inefficient burning of coal for household heating and cooking should be monitored during wintertime in Northeast China.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Carbono/análise , China , Carvão Mineral/análise , Nitratos/análise , Material Particulado/análise , Estações do Ano , Sulfatos/análise
10.
Sci Rep ; 7(1): 5047, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698671

RESUMO

Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.


Assuntos
Produtos Agrícolas/química , Resíduos Sólidos , Madeira/química , Aerossóis/análise , Cobre/química , Produtos Agrícolas/ultraestrutura , Espectrometria por Raios X
11.
Sci Total Environ ; 571: 103-9, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27470669

RESUMO

Chemical composition, morphology, size and mixture of fine particles were measured in a heavy haze and the post-haze air in Beijing in January 2012. With the occurrence of haze, the concentrations of gaseous and particulate pollutants including organics, sulfate, nitrate, and ammonium grew gradually. The hourly averaged PM2.5 concentration increased from 118µgm(-3) to 402µgm(-3) within 12h. In contrast, it was less than 10µgm(-3) in the post-haze air. Occupying approximately 46% in mass, organics were the major component of PM1 in both the haze and post-haze air. Analysis of individual particles in the size range of 0.2-1.1µm revealed that secondary-like particles and soot particles were always the majority, and most soot particles had a core-shell structure. The number ratio of secondary-like particles to soot particles in accumulation mode in the haze air was about 2:1, and that in the post-haze air was 8:1. These results indicate both secondary particle formation and primary emission contributed substantially to the haze. The mode size of the haze particles was about 0.7µm, and the mode size of the post-haze particles was 0.4µm, indicating the remarkable growth of particles in haze. However, the ratios of the core size to shell size of core-shell structure soot particles in the haze were similar to those in the post-haze air, suggesting a quick aging of soot particles in either the haze air or the post-haze air.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Pequim , Monitoramento Ambiental , Tamanho da Partícula , Estações do Ano
12.
Sci Total Environ ; 565: 287-298, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27177135

RESUMO

Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1-7µm with a peak of number concentration at about 3.5µm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400cm(-3), which was much lower than that in heavily polluted days (6300cm(-3)). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2-0.5µm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Minerais/análise , Material Particulado/análise , Pequim , China , Tamanho da Partícula
13.
J Environ Sci (China) ; 40: 161-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969556

RESUMO

Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao (36.15 °N, 120.49 °E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument (SEM-EDX). The particles appeared in various shapes, and their size mainly varied from 0.4 to 10 µm, with the mean diameters of 0.5, 1.5, and 1.0 µm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3-0.4 µm before the dust storm and about 0.5-0.7 µm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number.


Assuntos
Poeira/análise , Material Particulado/análise , Material Particulado/química , Poluentes Atmosféricos/análise , China , Microscopia Eletrônica de Varredura/métodos , Minerais/análise , Minerais/química , Tamanho da Partícula , Espectrometria por Raios X/instrumentação
14.
Sci Total Environ ; 430: 217-22, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22652010

RESUMO

Atmospheric particles larger than 0.2 µm were collected at the top of Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 µm in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 µm. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 µm. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage.


Assuntos
Poluentes Atmosféricos/análise , Tempestades Ciclônicas , Fuligem/análise , China , Monitoramento Ambiental , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Material Particulado/análise , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA