Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 360: 124676, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103039

RESUMO

The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.

2.
Water Res ; 261: 122001, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964215

RESUMO

Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.


Assuntos
Lagos , Fitoplâncton , Fitoplâncton/fisiologia , China , Ecossistema , Monitoramento Ambiental , Biodiversidade
3.
Water Res ; 261: 122045, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972236

RESUMO

Nutrient pollution is pervasive in many urban rivers, while restoration measures that reduce nutrient loading but fail to improve biological communities often lack effectiveness due to the indispensable role of biota, especially multi-taxa, in enhancing ecosystem stability and function. The investigation of the response patterns of multi-taxa to the nutrient loading in urban rivers is important for the recovery of biota structure and thus ecosystem function. However, little is known about the response patterns of multi-taxa and their impact on ecosystem structure and function in urban rivers. Here, the study, from the perspective of alternative stable states theory, showed the hysteretic response of both bacterial and micro-eukaryotic communities to nutrient loading based on the field investigation and environmental DNA metabarcoding. Bistability was shown to exist in both bacterial and micro-eukaryotic communities, demonstrating that the response of microbiota to nutrient loading was a regime shifts with hysteresis. Potential analysis then indicated that the increased nutrient loading drove regime shifts in the bacterial community and the micro-eukaryotic community towards a state dominated by anaerobic bacteria and benthic Bacillariophyta, respectively. High nutrient loading was found to reduce the relative abundance of metazoan, but increase that of eukaryotic algae, which made the trophic pyramid top-lighter and bottom-heavier, probably exacerbating the degradation of ecosystem function. It should be noted that, in response to the reduced nutrient loading, the recovery threshold of micro-eukaryotic communities (nutrient loading = ∼0.5) was lower than that of bacterial communities (nutrient loading = ∼1.2), demonstrating longer hysteresis of micro-eukaryotic communities. In addition, the markedly positive correlation between the status of microbial communities and N-related enzyme activities suggested the recovery of microbial communities probably will benefit the improvement of N-cycling functionality. The obtained results provide a deep insight into the collapse and recovery trajectories of multi-trophic microbiota to the nutrient loading gradient and their impact on the N transformation potential, therefore benefiting the restoration and management of urban rivers.


Assuntos
Bactérias , Rios , Nutrientes , Ecossistema , Eucariotos , Microbiota
4.
Water Res ; 261: 121979, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38941678

RESUMO

The biological carbon pump in karst areas is of great significance for maintaining the effectiveness of karst carbon sinks. However, the spatial distribution and carbon-fixing potential of microorganisms in different aquifers within karst areas remain poorly understood. In this study, the distribution patterns, ecological roles, and environmental drivers of microbiota associated with CO2 fixation were investigated in karst groundwater (KW), porous groundwater (PW), fractured groundwater (FW), and surface water (SW) within a typical karst watershed, located in Guilin, southwest China. KW, PW, and FW displayed the similar community structure and indicative carbon-fixing bacteria composition, which were dominated by chemoautotrophic bacteria compared to SW. Higher abundances of indicative carbon-fixing bacteria and carbon-fixing genes, as well as richer proportions of microbial-derived DOC, indicated the more significant microbial carbon-fixing potential in KW and PW. At the profile of KW, a carbon-fixing hotspot was discovered at the depths of 0-50 m. Correlation analysis between carbon-fixing bacteria and DOC revealed that the chemoautotrophic process driven by nitrogen and sulfur oxidation predominated the microbial carbon fixation in groundwater. Co-occurrence network analysis demonstrated that carbon-fixing bacteria exhibited cooperation with other bacterial taxa in KW, while competition was the dominant interaction in PW. Moreover, carbon-fixing bacteria was found to lead bacterial assembly more deterministic in KW. The analysis of environmental factors and microbial diversity illustrated that inorganic carbon and redox state drove community variations across groundwaters. Structural equation model (SEM) further confirmed that ORP was the primary factor influencing the carbon fixation potential. This study provides a new insight into biological carbon fixation in karst aquatic systems, which holds significance in the accurate assessment of karst carbon sinks.


Assuntos
Bactérias , Água Subterrânea , Água Subterrânea/microbiologia , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , China
5.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643575

RESUMO

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Poluentes Químicos da Água , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Água Doce/microbiologia , Estuários
6.
Sci Total Environ ; 924: 171597, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461980

RESUMO

Sulfamethoxazole (SMX) is a common antibiotic pollutant in aquatic environments, which is highly persistent under various conditions and significantly contributes to the spread of antibiotic resistance. Biodegradation is the major pathway to eliminate antibiotics in the natural environment. The roles of bacteria and eukaryotes in the biodegradation of antibiotics have received considerable attention; however, their successions and co-occurrence patterns during the biodegradation of antibiotics remain unexplored. In this study, 13C-labled SMX was amended to sediment samples from Zhushan Bay (ZS), West Shore (WS), and Gonghu Bay (GH) in Taihu Lake to explore the interplay of bacterial and eukaryotic communities during a 30-day incubation period. The cumulative SMX mineralization on day 30 ranged from 5.2 % to 19.3 %, which was the highest in WS and the lowest in GH. The bacterial community showed larger within-group interactions than between-group interactions, and the positive interactions decreased during incubation. However, the eukaryotic community displayed larger between-group interactions than within-group interactions, and the positive interactions increased during incubation. The proportion of negative interactions between bacteria and eukaryotes increased during incubation. Fifty genera (including 46 bacterial and 4 eukaryotic genera) were identified as the keystone taxa due to their dominance in the co-occurrence network and tolerance to SMX. The cumulative relative abundance of these keystone taxa significantly increased during incubation and was consistent with the SMX mineralization rate. These taxa closely cooperated and played vital roles in co-occurrence networks and microbial community interactions, signifying their crucial role in SMX mineralization. These findings broadened our understanding of the complex interactions of microorganisms under SMX exposure and their potential functions during SMX mineralization, providing valuable insights for in situ bioremediation.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Lagos/microbiologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/análise
7.
Chem Commun (Camb) ; 60(23): 3202-3204, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38415740

RESUMO

N-nitro type reagents have been demonstrated as mild nitration tools in recent years. This work presents an exploration of direct nitration of aryl alkenes mediated by DNDMH, a novel N-nitro type reagent developed in our previous study. It exhibits herein a new property of DNDMH as an effective direct nitration reagent for aryl alkenes, through probably the delivery of nitro radicals with the aid of TEMPO and Cu(OAc)2.

8.
Sci Total Environ ; 916: 170186, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278244

RESUMO

The impoundment of rivers by dams has significantly modified sedimentation patterns and trophic structures. As a result, the algal-derived organic matter (OM), as opposed to terrestrial-derived OM, plays an increasingly important role along the river-reservoir gradient. This study utilized water-sediment microcosms to explore the impacts of allochthonous and autochthonous OM deposition on benthic nutrient dynamics mediated by microbial food webs. Our results revealed that OM addition led to increased fluxes of NH4+ and CO2, with the highest flux induced by cyanobacteria OM, followed by diatom and allochthonous OM. N2 release flux was promoted by allochthonous and diatom OM deposition but inhibited by cyanobacteria OM deposition. The amendment of autochthonous OM increased the activity of dehydrogenase and urease, while allochthonous OM with a higher C/N ratio enhanced the catalytic abilities of polyphenol oxidase and ß-glucosidase. Furthermore, OM deposition significantly reduced microbial community richness and diversity, except for eukaryotic richness, and induced pronounced changes in bacterial and eukaryotic community structures. Allochthonous OM deposition stimulated the utilization of bacteria and protozoan on native OM, resulting in a positive priming effect of 26.78 %. In contrast, diatom and cyanobacteria OM additions exerted negative priming effects of -44.53 % and -29.76 %, respectively. Bayesian stable isotope mixing models showed that diatom OM was primarily absorbed by protozoan and metazoan, while cyanobacteria OM was more easily decomposed by bacteria and transferred to higher trophic levels through microbial food webs. In addition, bacterial ammonification accounted for 74.5 % of NH4+ release in the allochthonous OM deposition treatment, whereas eukaryotic excretion contributed separately 83.3 % and 83.1 % to NH4+ release in the diatom and cyanobacteria OM addition treatments. These findings highlight the significance of accounting for the regulatory capacity of OM deposition when studying benthic metabolism within river-reservoir systems.


Assuntos
Cianobactérias , Cadeia Alimentar , Animais , Teorema de Bayes , Rios/química , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA